Low-Power Crystal and MEMS Oscillators


Book Description

Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems and has accumulated most of the material during this period. Some additional original material related to phase noise has been added. The explanations are mainly supported by analytical developments, whereas computer simulation is limited to numerical examples. The main part is dedicated to the most important Pierce circuit, with a full design procedure illustrated by examples. Symmetrical circuits that became popular for modern telecommunication systems are analyzed in a last chapter.




Understanding Quartz Crystals and Oscillators


Book Description

Quartz, unique in its chemical, electrical, mechanical, and thermal properties, is used as a frequency control element in applications where stability of frequency is an absolute necessity. Without crystal controlled transmission, radio and television would not be possible in their present form. The quartz crystals allow the individual channels in communication systems to be spaced closer together to make better use of one of most precious resources -- wireless bandwidth. This book describes the characteristics of the art of crystal oscillator design, including how to specify and select crystal oscillators. While presenting various varieties of crystal oscillators, this resource also provides you with useful MathCad and Genesys simulations.




Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems


Book Description

This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.




Ultra-Low-Power Short-Range Radios


Book Description

This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. The authors describe leading-edge techniques to achieve ultra-low-power communication over short-range links. Many different applications are covered, ranging from body-area networks to transcutaneous implant communications and smart-appliance sensor networks. Various design techniques are explained to facilitate each of these applications.




MEMS-based Circuits and Systems for Wireless Communication


Book Description

MEMS-based Circuits and Systems for Wireless Communications provides comprehensive coverage of RF-MEMS technology from device to system level. This edited volume places emphasis on how system performance for radio frequency applications can be leveraged by Micro-Electro-Mechanical Systems (MEMS). Coverage also extends to innovative MEMS-aware radio architectures that push the potential of MEMS technology further ahead. This work presents a broad overview of the technology from MEMS devices (mainly BAW and Si MEMS resonators) to basic circuits, such as oscillators and filters, and finally complete systems such as ultra-low-power MEMS-based radios. Contributions from leading experts around the world are organized in three parts. Part I introduces RF-MEMS technology, devices and modeling and includes a prospective outlook on ongoing developments towards Nano-Electro-Mechanical Systems (NEMS) and phononic crystals. Device properties and models are presented in a circuit oriented perspective. Part II focusses on design of electronic circuits incorporating MEMS. Circuit design techniques specific to MEMS resonators are applied to oscillators and active filters. In Part III contributors discuss how MEMS can advantageously be used in radios to increase their miniaturization and reduce their power consumption. RF systems built around MEMS components such as MEMS-based frequency synthesis including all-digital PLLs, ultra-low power MEMS-based communication systems and a MEMS-based automotive wireless sensor node are described.




Electromagnetics of Body Area Networks


Book Description

The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyond.




Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks


Book Description

This book investigates the possible circuit solutions to overcome the temperature and supply voltage-sensitivity of fully-integrated time references for ultra-low-power communication in wireless sensor networks. The authors provide an elaborate theoretical introduction and literature study to enable full understanding of the design challenges and shortcomings of current oscillator implementations. Furthermore, a closer look to the short-term as well as the long-term frequency stability of integrated oscillators is taken. Next, a design strategy is developed and applied to 5 different oscillator topologies and 1 sensor interface. All 6 implementations are subject to an elaborate study of frequency stability, phase noise and power consumption. In the final chapter all blocks are compared to the state of the art.




Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers


Book Description

This book is based on the 18 invited tutorials presented during the 27th workshop on Advances in Analog Circuit Design. Expert designers from both industry and academia present readers with information about a variety of topics at the frontiers of analog circuit design, including the design of analog circuits in power-constrained applications, CMOS-compatible sensors for mobile devices and energy-efficient amplifiers and drivers. For anyone involved in the design of analog circuits, this book will serve as a valuable guide to the current state-of-the-art. Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Covers the design of analog circuits in power-constrained applications, CMOS-compatible sensors for mobile devices and energy-efficient amplifiers and drivers.




Piezoelectric MEMS Resonators


Book Description

This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.




Low Power Circuits for Emerging Applications in Communications, Computing, and Sensing


Book Description

The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architecutres, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Features Discusses unique technologies and material only available in specialized journal and conferences Covers emerging applications areas, such as ultra low power communications, emerging bio-electronics, and operation in extreme environments Explores broad circuit operation, ex. analog, RF, memory, and digital circuits Contains practical applications in the engineering field, as well as graduate studies Written by international experts from both academia and industry