Experimental Techniques in Low-temperature Physics


Book Description

This book is for those physicists, physical chemists, metallurgists and engineers who need to carry out investigations at low temperatures. It deals with the production and measurement of low temperatures, the handling of liquefied gases on the laboratory scale, and the principles and details of the design of experimental cryostats, including the problems of heat transfer and temperature control. While covering the technical details needed by professional researchers, such as the electrical and thermal conductivities of materials used in making low temperature equipment, the book includes enough explanations of the fundamental principles that it will also be useful to advanced university students.




Physics and Chemistry at Low Temperatures


Book Description

Covering the fundamental and practical aspects of the processes of thermodynamics as well as experimental and theoretical methods used in the field, this informed examination highlights how the development of thermodynamics has been essentially based on the potentials of cryogenic technology. Penned by leading scientists with strong experience in the field who predict that many useful and exciting phenomena remain to be discovered in the future, this well-researched educational resource contains both a history of and practical recommendations for the ongoing study of matter at low temperature.




Matter and Methods at Low Temperatures


Book Description

The aim of this book is to provide information about performing experi ments at low temperatures, as well as basic facts concerning the low tem perature properties of liquid and solid matter. To orient the reader, I begin with chapters on these low temperature properties. The major part of the book is then devoted to refrigeration techniques and to the physics on which they are based. Of equal importance, of course, are the definition and measurement of temperature; hence low temperature thermometry is extensively discussed in subsequent chapters. Finally, I describe a variety of design and construction techniques which have turned out to be useful over the years. The content of the book is based on the three-hour-per-week lecture course which I have given several times at the University of Bayreuth between 1983 and 1991. It should be particularly suited for advanced stu dents whose intended masters (diploma) or Ph.D. subject is experimental condensed matter physics at low temperatures. However, I believe that the book will also be of value to experienced scientists, since it describes sev eral very recent advances in experimental low temperature physics and technology, for example, new developments in nuclear refrigeration and thermometry.




Experimental Techniques In Condensed Matter Physics At Low Temperatures


Book Description

This practical book provides recipes for the construction of devices used in low temperature experimentation. It emphasizes what works, rather than what might be the optimum method, and lists current sources for purchasing components and equipment.




Theory of Low-Temperature Plasma Physics


Book Description

This book offers the reader an overview of the basic approaches to the theoretical description of low-temperature plasmas, covering numerical methods, mathematical models and modeling techniques. The main methods of calculating the cross sections of plasma particle interaction and the solution of the kinetic Boltzmann equation for determining the transport coefficients of the plasma are also presented. The results of calculations of thermodynamic properties, transport coefficients, the equilibrium particle-interaction cross sections and two-temperature plasmas are also discussed. Later chapters consider applications, and the results of simulation and calculation of plasma parameters in induction and arc plasma torches are presented. The complex physical processes in high-frequency plasmas and arc plasmas, the internal and external parameters of plasma torches, near-electrode processes, heat transfer, the flow of solid particles in plasmas and other phenomena are considered. The book is intended for professionals involved in the theoretical study of low-temperature plasmas and the design of plasma torches, and will be useful for advanced students in related areas.




Quantum Information and Computation for Chemistry, Volume 154


Book Description

Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.







Uniform Supersonic Flows In Chemical Physics: Chemistry Close To Absolute Zero Studied Using The Cresu Method


Book Description

Radioastronomy has painted an extraordinary picture of the Galactic interstellar medium, which displays an amazing organization and structuring of matter from very hot ultra-diluted media to very cold denser milieus considered as the cradles of stars. In these latter environments, the discovery of a chemical diversity of molecules, including those associated with precursors to life itself, immediately brought to light the question of the mechanisms leading to their formation and persistence at temperatures as low as 10 K. The chemical networks developed to understand telescope observations required a great deal of physical and chemical parameters relevant to interstellar conditions, particularly at very low temperatures. These included the rate coefficients of thousands of gas phase chemical reactions. Such data were missing in the 1970s, when the very first molecular discoveries were made. Then, in the early eighties, it was realized that uniform supersonic flows were ideal chemical reactors to study reaction kinetics at interstellar temperatures.Uniform Supersonic Flows in Chemical Physics reviews 40 years of use of such reactors, the so-called CRESU machines, focusing on major breakthroughs brought to chemical physics, physical chemistry, astrophysics and astrochemistry by the various experiments carried out with such apparatuses. The wealth of kinetic data at very low temperatures provided new targets for the predictions of theory, with new theoretical methods being developed to explain observed behavior. The first two chapters describe the physical context of reaction kinetics at very low temperatures and the requirements needed to run optimally such uniform supersonic flows, together with a historical perspective. Chapters 3 to 9 describe the various families of chemical processes that have been explored within the CRESU technique, highlighting major advances and offering an exhaustive up-to-date bibliography. Chapters 10 and 11 show how these experimental results have helped in improving the ideas in quantum chemistry and interstellar modeling. The book concludes with an overview of potential perspectives and new routes to be explored.




Amorphous Solids


Book Description

It is now ten years since it was first convincingly shown that below 1 K the ther mal conductivity and the heat capacity of amorphous solids behave in a way which is strikingly different to that of crystalline solids. Since that time there has been a wide variety of experimental and theoretical studies which have not only defined and clarified the low temperature problem more closely, but have also linked these differences between amorphous and crystalline solids to those suggested by older acoustic and thermal experiments (extending up to 100 K). The interest in this somewhat restricted branch of physics lies to a considerable extent in the fact that the differences were so unexpected. It might be thought that as the tempera ture, probing frequency, or more generally the energy decreases, a continuum de scription in which structural differences between glass and crystal are concealed should become more accurate. In a sense this is true, but it appears that there exists in an amorphous solid a large density of additional excitations which have no counterpart in normal crystals. This book presents a survey of the wide range of experimental investigations of these low energy excitations, together with a re view of the various theoretical models put forward to explain their existence and nature.