Introduction to Matrix Analysis


Book Description

Lucid and concise, this volume covers all the key aspects of matrix analysis and presents a variety of fundamental methods.







The Theory of Matrices in Numerical Analysis


Book Description

This text presents selected aspects of matrix theory that are most useful in developing computational methods for solving linear equations and finding characteristic roots. Topics include norms, bounds and convergence; localization theorems; more. 1964 edition.




National Bureau of Standards Report


Book Description







AFOSR.


Book Description




Geršgorin and His Circles


Book Description

"Contains numerous simple examples and illustrative diagrams....For anyone seeking information about eigenvalue inclusion theorems, this book will be a great reference." --Mathematical Reviews This book studies the original results, and their extensions, of the Russian mathematician S.A. Geršgorin who wrote a seminal paper in 1931 on how to easily obtain estimates of all n eigenvalues (characteristic values) of any given n-by-n complex matrix.




Toeplitz and Circulant Matrices


Book Description

The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes. The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes.