Lusternik-Schnirelmann Category and Related Topics


Book Description

This collection is the proceedings volume for the AMS-IMS-SIAM Joint Summer Research Conference, Lusternik-Schnirelmann Category, held in 2001 at Mount Holyoke College in Massachusetts. The conference attracted an international group of 37 participants that included many leading experts. The contributions included here represent some of the field's most able practitioners. With a surge of recent activity, exciting advances have been made in this field, including the resolution of several long-standing conjectures. Lusternik-Schnirelmann category is a numerical homotopy invariant that also provides a lower bound for the number of critical points of a smooth function on a manifold. The study of this invariant, together with related notions, forms a subject lying on the boundary between homotopy theory and critical point theory. These articles cover a wide range of topics: from a focus on concrete computations and applications to more abstract extensions of the fundamental ideas. The volume includes a survey article by P. Hilton that discusses earlier results from homotopy theory that form the basis for more recent work in this area. In this volume, professional mathematicians in topology and dynamical systems as well as graduate students will catch glimpses of the most recent views of the subject.




Lusternik-Schnirelmann Category


Book Description

''Lusternik-Schnirelmann category is like a Picasso painting. Looking at category from different perspectives produces completely different impressions of category's beauty and applicability.'' --from the Introduction Lusternik-Schnirelmann category is a subject with ties to both algebraic topology and dynamical systems. The authors take LS-category as the central theme, and then develop topics in topology and dynamics around it. Included are exercises and many examples. The book presents the material in a rich, expository style. The book provides a unified approach to LS-category, including foundational material on homotopy theoretic aspects, the Lusternik-Schnirelmann theorem on critical points, and more advanced topics such as Hopf invariants, the construction of functions with few critical points, connections with symplectic geometry, the complexity of algorithms, and category of $3$-manifolds. This is the first book to synthesize these topics. It takes readers from the very basics of the subject to the state of the art. Prerequisites are few: two semesters of algebraic topology and, perhaps, differential topology. It is suitable for graduate students and researchers interested




Topological Complexity and Related Topics


Book Description

This volume contains the proceedings of the mini-workshop on Topological Complexity and Related Topics, held from February 28–March 5, 2016, at the Mathematisches Forschungsinstitut Oberwolfach. Topological complexity is a numerical homotopy invariant, defined by Farber in the early twenty-first century as part of a topological approach to the motion planning problem in robotics. It continues to be the subject of intensive research by homotopy theorists, partly due to its potential applicability, and partly due to its close relationship to more classical invariants, such as the Lusternik–Schnirelmann category and the Schwarz genus. This volume contains survey articles and original research papers on topological complexity and its many generalizations and variants, to give a snapshot of contemporary research on this exciting topic at the interface of pure mathematics and engineering.




Groups of Homotopy Self-Equivalences and Related Topics


Book Description

This volume offers the proceedings from the workshop held at the University of Milan (Italy) on groups of homotopy self-equivalences and related topics. The book comprises the articles relating current research on the group of homotopy self-equivalences, homotopy of function spaces, rational homotopy theory, classification of homotopy types, and equivariant homotopy theory. Mathematicians from many areas of the globe attended the workshops to discuss their research and to share ideas. Included are two specially-written articles, by J.W. Rutter, reviewing the work done in the area of homotopy self-equivalences since 1988. Included also is a bibliography of some 122 articles published since 1988 and a list of problems. This book is suitable for both advanced graduate students and researchers.




Kac-Moody Lie Algebras and Related Topics


Book Description

This volume is the proceedings of the Ramanujan International Symposium on Kac-Moody Lie algebras and their applications. The symposium provided researchers in mathematics and physics with the opportunity to discuss new developments in this rapidly-growing area of research. The book contains several excellent articles with new and significant results. It is suitable for graduate students and researchers working in Kac-Moody Lie algebras, their applications, and related areas of research.




Homotopy Theory of Function Spaces and Related Topics


Book Description

This volume contains the proceedings of the Workshop on Homotopy Theory of Function Spaces and Related Topics, which was held at the Mathematisches Forschungsinstitut Oberwolfach, in Germany, from April 5-11, 2009. This volume contains fourteen original research articles covering a broad range of topics that include: localization and rational homotopy theory, evaluation subgroups, free loop spaces, Whitehead products, spaces of algebraic maps, gauge groups, loop groups, operads, and string topology. In addition to reporting on various topics in the area, this volume is supposed to facilitate the exchange of ideas within Homotopy Theory of Function Spaces, and promote cross-fertilization between Homotopy Theory of Function Spaces and other areas. With these latter aims in mind, this volume includes a survey article which, with its extensive bibliography, should help bring researchers and graduate students up to speed on activity in this field as well as a problems list, which is an expanded and edited version of problems discussed in sessions held at the conference. The problems list is intended to suggest directions for future work.




Algebraic and Arithmetic Theory of Quadratic Forms


Book Description

This proceedings volume contains papers presented at the International Conference on the algebraic and arithmetic theory of quadratic forms held in Talca (Chile). The modern theory of quadratic forms has connections with a broad spectrum of mathematical areas including number theory, geometry, and K-theory. This volume contains survey and research articles covering the range of connections among these topics. The survey articles bring readers up-to-date on research and open problems in representation theory of integral quadratic forms, the algebraic theory of finite square class fields, and developments in the theory of Witt groups of triangulated categories. The specialized articles present important developments in both the algebraic and arithmetic theory of quadratic forms, as well as connections to geometry and K-theory. The volume is suitable for graduate students and research mathematicians interested in various aspects of the theory of quadratic forms.




Towards a Theory of Geometric Graphs


Book Description

This volume contains a collection of papers on graph theory, with the common theme that all the graph theoretical problems addressed are approached from a geometrical, rather than an abstract point of view. This is no accident; the editor selected these papers not as a comprehensive literature revie




Fast Algorithms for Structured Matrices


Book Description

One of the best known fast computational algorithms is the fast Fourier transform method. Its efficiency is based mainly on the special structure of the discrete Fourier transform matrix. Recently, many other algorithms of this type were discovered, and the theory of structured matrices emerged. This volume contains 22 survey and research papers devoted to a variety of theoretical and practical aspects of the design of fast algorithms for structured matrices and related issues. Included are several papers containing various affirmative and negative results in this direction. The theory of rational interpolation is one of the excellent sources providing intuition and methods to design fast algorithms. The volume contains several computational and theoretical papers on the topic. There are several papers on new applications of structured matrices, e.g., to the design of fast decoding algorithms, computing state-space realizations, relations to Lie algebras, unconstrained optimization, solving matrix equations, etc. The book is suitable for mathematicians, engineers, and numerical analysts who design, study, and use fast computational algorithms based on the theory of structured matrices.




Discrete Geometric Analysis


Book Description

Collects papers from the proceedings of the first symposium of the Japan Association for Mathematical Sciences. This book covers topics that center around problems of geometric analysis in relation to heat kernels, random walks, and Poisson boundaries on discrete groups, graphs, and other combinatorial objects.