Lyapunov Exponents of Linear Cocycles


Book Description

The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropriate large deviation type estimates for quantities related to the iterates of the base and fiber dynamics associated with the linear cocycle. We establish such estimates for various models of random and quasi-periodic cocycles. Our method has its origins in a paper of M. Goldstein and W. Schlag. Our present work expands upon their approach in both depth and breadth. We conclude this monograph with a list of related open problems, some of which may be treated using a similar approach.




Lectures on Lyapunov Exponents


Book Description

The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.




Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)


Book Description

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.




New Trends in Lyapunov Exponents


Book Description

This volume presents peer-reviewed surveys on new developments in the study of Lyapunov exponents in dynamical systems and its applications to other areas, such as mathematical physics. Written by leading experts in their fields, the contributions are based upon the presentations given by invited speakers at the “New Trends in Lyapunov Exponents” workshop held in Lisbon, Portugal, February 7–11, 2022. The works focus on the concept of Lyapunov exponents in their various manifestations in dynamical systems along with their applications to mathematical physics and other areas of mathematics. The papers reflect the spirit of the conference of promoting new connections among different subjects in dynamical systems. This volume aims primarily at researchers and graduate students working in dynamical systems and related fields, serving as an introduction to active fields of research and as a review of recent results as well.




Nonuniform Hyperbolicity


Book Description

A self-contained, comprehensive account of modern smooth ergodic theory, the mathematical foundation of deterministic chaos.




A Vision for Dynamics in the 21st Century


Book Description

A large international conference celebrated the 50-year career of Anatole Katok and the body of research across smooth dynamics and ergodic theory that he touched. In this book many leading experts provide an account of the latest developments at the research frontier and together set an agenda for future work, including an explicit problem list. This includes elliptic, parabolic, and hyperbolic smooth dynamics, ergodic theory, smooth ergodic theory, and actions of higher-rank groups. The chapters are written in a readable style and give a broad view of each topic; they blend the most current results with the developments leading up to them, and give a perspective on future work. This book is ideal for graduate students, instructors and researchers across all research areas in dynamical systems and related subjects.




Dynamics Beyond Uniform Hyperbolicity


Book Description

What is Dynamics about? In broad terms, the goal of Dynamics is to describe the long term evolution of systems for which an "infinitesimal" evolution rule is known. Examples and applications arise from all branches of science and technology, like physics, chemistry, economics, ecology, communications, biology, computer science, or meteorology, to mention just a few. These systems have in common the fact that each possible state may be described by a finite (or infinite) number of observable quantities, like position, velocity, temperature, concentration, population density, and the like. Thus, m the space of states (phase space) is a subset M of an Euclidean space M . Usually, there are some constraints between these quantities: for instance, for ideal gases pressure times volume must be proportional to temperature. Then the space M is often a manifold, an n-dimensional surface for some n







Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)


Book Description

This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called "non-perturbative" methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations. Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological "state of the art."




Topological Dynamics of Random Dynamical Systems


Book Description

This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.