Machine Learning and Mechanics Based Soft Computing Applications


Book Description

This book highlights recent advances in the area of machine learning and robotics-based soft computing applications. The book covers various artificial intelligence, machine learning, and mechanics, a mix of mechanical computational engineering work. The current computing era has a huge market/potential for machine learning, robotics, and soft computing techniques and their applications. With this in view, the book shares latest research and cutting-edge applications useful for professionals and researchers in these areas. ​




Machine Learning and Mechanics Based Soft Computing Applications


Book Description

This book highlights recent advances in the area of machine learning and robotics-based soft computing applications. The book covers various artificial intelligence, machine learning, and mechanics, a mix of mechanical computational engineering work. The current computing era has a huge market/potential for machine learning, robotics, and soft computing techniques and their applications. With this in view, the book shares latest research and cutting-edge applications useful for professionals and researchers in these areas.




Proceedings of 7th International Conference on Harmony Search, Soft Computing and Applications


Book Description

The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Seventh International Conference on Harmony Search, Soft Computing and Applications held at Virtual Conference, Seoul, South Korea, in February 2022. Harmony search (HS) is one of the most popular metaheuristic algorithms, developed in 2001 by Prof. Joong Hoon Kim and Prof. Zong Woo Geem, that mimics the improvisation process of jazz musicians to seek the best harmony. The book consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.




Soft Computing and Human-Centered Machines


Book Description

Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Work bench represents an important new contribution in the field of practical computer technology. Tosiyasu L. Kunii Preface With the advent of digital computers some five decades ago and the wide spread use of computer networks recently, we have gained enormous power in gathering information and manufacturing. Yet, this increase in comput ing power has not given us freedom in a real sense, we are increasingly enslaved by the very machine we built for gaining freedom and efficiency. Making machines to serve mankind is an essential issue we are facing. Building human-centered systems is an imperative task for scientists and engineers in the new millennium. The topic of human-centered servant modules covers a vast area. In our projects we have focused our efforts on developing theories and techn!ques based on fuzzy theories. Chapters 2 to 12 in this book collectively deal with the theoretical, methodological, and applicational aspects of human centered systems. Each chapter presents the most recent research results by the authors on a particular topic.







Granular Computing Based Machine Learning


Book Description

This book explores the significant role of granular computing in advancing machine learning towards in-depth processing of big data. It begins by introducing the main characteristics of big data, i.e., the five Vs—Volume, Velocity, Variety, Veracity and Variability. The book explores granular computing as a response to the fact that learning tasks have become increasingly more complex due to the vast and rapid increase in the size of data, and that traditional machine learning has proven too shallow to adequately deal with big data. Some popular types of traditional machine learning are presented in terms of their key features and limitations in the context of big data. Further, the book discusses why granular-computing-based machine learning is called for, and demonstrates how granular computing concepts can be used in different ways to advance machine learning for big data processing. Several case studies involving big data are presented by using biomedical data and sentiment data, in order to show the advances in big data processing through the shift from traditional machine learning to granular-computing-based machine learning. Finally, the book stresses the theoretical significance, practical importance, methodological impact and philosophical aspects of granular-computing-based machine learning, and suggests several further directions for advancing machine learning to fit the needs of modern industries. This book is aimed at PhD students, postdoctoral researchers and academics who are actively involved in fundamental research on machine learning or applied research on data mining and knowledge discovery, sentiment analysis, pattern recognition, image processing, computer vision and big data analytics. It will also benefit a broader audience of researchers and practitioners who are actively engaged in the research and development of intelligent systems.




Applications of Computational Intelligence in Concrete Technology


Book Description

Computational intelligence (CI) in concrete technology has not yet been fully explored worldwide because of some limitations in data sets. This book discusses the selection and separation of data sets, performance evaluation parameters for different types of concrete and related materials, and sensitivity analysis related to various CI techniques. Fundamental concepts and essential analysis for CI techniques such as artificial neural network, fuzzy system, support vector machine, and how they work together for resolving real-life problems, are explained. Features: It is the first book on this fast-growing research field. It discusses the use of various computation intelligence techniques in concrete technology applications. It explains the effectiveness of the methods used and the wide range of available techniques. It integrates a wide range of disciplines from civil engineering, construction technology, and concrete technology to computation intelligence, soft computing, data science, computer science, and so on. It brings together the experiences of contributors from around the world who are doing research in this field and explores the different aspects of their research. The technical content included is beneficial for researchers as well as practicing engineers in the concrete and construction industry.




Soft Computing in Engineering


Book Description

Soft computing methods such as neural networks and genetic algorithms draw on the problem solving strategies of the natural world which differ fundamentally from the mathematically-based computing methods normally used in engineering. Human brains are highly effective computers with capabilities far beyond those of the most sophisticated electronic computers. The 'soft computing‘ methods they use can solve very difficult inverse problems based on reduction in disorder. This book outlines these methods and applies them to a range of difficult engineering problems, including applications in computational mechanics, earthquake engineering, and engineering design. Most of these are difficult inverse problems – especially in engineering design – and are treated in depth.




Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering


Book Description

Recent developments in information processing systems have driven the advancement of computational methods in the engineering realm. New models and simulations enable better solutions for problem-solving and overall process improvement. The Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering is an authoritative reference work representing the latest scholarly research on the application of computational models to improve the quality of engineering design. Featuring extensive coverage on a range of topics from various engineering disciplines, including, but not limited to, soft computing methods, comparative studies, and hybrid approaches, this book is a comprehensive reference source for students, professional engineers, and researchers interested in the application of computational methods for engineering design.




Soft Computing in Case Based Reasoning


Book Description

This text demonstrates how various soft computing tools can be applied to design and develop methodologies and systems with case based reasoning, that is, for real-life decision-making or recognition problems. Comprising contributions from experts, it introduces the basic concepts and theories, and includes many reports on real-life applications. This book is of interest to graduate students and researchers in computer science, electrical engineering and information technology, as well as researchers and practitioners from the fields of systems design, pattern recognition and data mining.