Machine Learning for Vision-Based Motion Analysis


Book Description

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.




Machine Learning for Vision-Based Motion Analysis


Book Description

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.




Machine Learning for Human Motion Analysis: Theory and Practice


Book Description

"This book highlights the development of robust and effective vision-based motion understanding systems, addressing specific vision applications such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval"--Provided by publisher.







Similarity-Based Pattern Recognition


Book Description

This book constitutes the proceedings of the Second International Workshop on Similarity Based Pattern Analysis and Recognition, SIMBAD 2013, which was held in York, UK, in July 2013. The 18 papers presented were carefully reviewed and selected from 33 submissions. They cover a wide range of problems and perspectives, from supervised to unsupervised learning, from generative to discriminative models, from theoretical issues to real-world practical applications, and offer a timely picture of the state of the art in the field.




Vision Based Systemsfor UAV Applications


Book Description

This monograph is motivated by a significant number of vision based algorithms for Unmanned Aerial Vehicles (UAV) that were developed during research and development projects. Vision information is utilized in various applications like visual surveillance, aim systems, recognition systems, collision-avoidance systems and navigation. This book presents practical applications, examples and recent challenges in these mentioned application fields. The aim of the book is to create a valuable source of information for researchers and constructors of solutions utilizing vision from UAV. Scientists, researchers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and IC can find many valuable, useful and practical suggestions and solutions. The latest challenges for vision based systems are also presented.




Image Analysis


Book Description

This book constitutes the refereed proceedings of the 18th Scandinavian Conference on Image Analysis, SCIA 2013, held in Espoo, Finland, in June 2013. The 67 revised full papers presented were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections on feature extraction and segmentation, pattern recognition and machine learning, medical and biomedical image analysis, faces and gestures, object and scene recognition, matching, registration, and alignment, 3D vision, color and multispectral image analysis, motion analysis, systems and applications, human-centered computing, and video and multimedia analysis.




Computer Vision -- ACCV 2009


Book Description

The three volume set LNCS 5994, LNCS 5995, and LNCS 5996 constitutes the thoroughly refereed post-conference proceedings of the 9th Asian Conference on Computer Vision, ACCV 2009, held in Xi'an, China, in September 2009. The 35 revised full papers and 130 revised poster papers of the three volumes were carefully reviewed and seleceted from 670 submissions. The papers are organized in topical sections on multiple view and stereo, face and pose analysis, motion analysis and tracking, segmentation, feature extraction and object detection, image enhancement and visual attention, machine learning algorithms for vision, object categorization and face recognition, biometrics and surveillance, stereo, motion analysis, and tracking, segmentation, detection, color and texture, as well as machine learning, recognition, biometrics and surveillance.




Motion Analysis and Image Sequence Processing


Book Description

An image or video sequence is a series of two-dimensional (2-D) images sequen tially ordered in time. Image sequences can be acquired, for instance, by video, motion picture, X-ray, or acoustic cameras, or they can be synthetically gen erated by sequentially ordering 2-D still images as in computer graphics and animation. The use of image sequences in areas such as entertainment, visual communications, multimedia, education, medicine, surveillance, remote control, and scientific research is constantly growing as the use of television and video systems are becoming more and more common. The boosted interest in digital video for both consumer and professional products, along with the availability of fast processors and memory at reasonable costs, has been a major driving force behind this growth. Before we elaborate on the two major terms that appear in the title of this book, namely motion analysis and image sequence processing, we like to place them in their proper contexts within the range of possible operations that involve image sequences. In this book, we choose to classify these operations into three major categories, namely (i) image sequence processing, (ii) image sequence analysis, and (iii) visualization. The interrelationship among these three categories is pictorially described in Figure 1 below in the form of an "image sequence triangle".




Biomedical Applications Based on Natural and Artificial Computing


Book Description

The two volumes LNCS 10337 and 10338 constitute the proceedings of the International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, held in Corunna, Spain, in June 2017. The total of 102 full papers was carefully reviewed and selected from 194 submissions during two rounds of reviewing and improvement. The papers are organized in two volumes, one on natural and artificial computation for biomedicine and neuroscience, addressing topics such as theoretical neural computation; models; natural computing in bioinformatics; physiological computing in affective smart environments; emotions; as well as signal processing and machine learning applied to biomedical and neuroscience applications. The second volume deals with biomedical applications, based on natural and artificial computing and addresses topics such as biomedical applications; mobile brain computer interaction; human robot interaction; deep learning; machine learning applied to big data analysis; computational intelligence in data coding and transmission; and applications.