Machining of Light Alloys


Book Description

Aluminium, magnesium and titanium are alloys of special interest for engineering applications in a wide range of sectors such as aeronautics, automotive and medical. Their low density, along with sufficient mechanical properties, makes them especially adequate for sectors such as transportation allowing diminishing weight less fuel consumption and emissions to the atmosphere. Nowadays, machining is still one the most important manufacturing processes, not only for metal parts, but also for specially designed hybrid parts for more demanding new applications. A wide range of valuable research has been done on the machining of conventional engineering materials. However, when dealing with light alloys and hybrid materials containing them, they need to face new challenges. Particularly, it is important to analyse the suitability of the machining of these alloys in the current context of Industry 4.0, focusing on the development of cost-effective and sustainable processes. This book is a comprehensive source on the machining of light alloys, presenting a collection of both experimental and review studies. The work is arranged in eight chapters, presented by a group of international scholars, which analyse the main problems related to the machining of these alloys from different perspectives. Key Features A comprehensive state-of-the-art reference source on machining of light alloys Provides research on conventional and non-conventional machining process Offers current research topics on sustainable machining Presents research on the machining of hybrid materials using light alloys Includes applications for Industry 4.0 environments Machining of Light Alloys: Aluminum, Titanium, and Magnesium The aim of the book is to serve as a tool for helping researchers and practitioners to face machining challenges and facilitating the development of new industrial applications for light alloys.




Machining of Metal Matrix Composites


Book Description

Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals involved with MMC applications. It can also be used to teach modern manufacturing engineering or as a textbook for advanced undergraduate and postgraduate engineering courses in machining, manufacturing or materials.




Advanced Machining Processes of Metallic Materials


Book Description

Advanced Machining Processes of Metallic Materials updates our knowledge on the metal cutting processes in relation to theory and industrial practice. In particular, many topics reflect recent developments, e.g. modern tool materials, computational machining, computer simulation of various process phenomena, chip control, monitoring of the cutting state, progressive and hybrid machining operations, and generation and modelling of surface integrity. This book addresses the present state and future development of machining technologies. It provides a comprehensive description of metal cutting theory, experimental and modelling techniques along with basic machining processes and their effective use in a wide range of manufacturing applications. Topics covered include fundamental physical phenomena and methods for their evaluation, available technology of machining processes for specific classes of materials and surface integrity. The book also provides strategies for optimalization techniques and assessment of machinability. Moreover, it describes topics not currently covered in other sources, such as high performance and multitasking (complete) machining with a high potential for increasing productivity, and virtual and e-machining. The research covered here has contributed to a more generalized vision of machining technology, including not only traditional manufacturing tasks but also new potential (emerging) applications such as micro- and nanotechnology. - Many practical examples of modern machining technology - Applicable for various technical, engineering and scientific levels - Collects together 20 years of research in the field and related technical information




Recent Advances in Material, Manufacturing, and Machine Learning


Book Description

The main aim of the 2nd international conference on recent advances in materials manufacturing and machine learning processes-2023 (RAMMML-23) is to bring together all interested academic researchers, scientists, engineers, and technocrats and provide a platform for continuous improvement of manufactur□ing, machine learning, design and materials engineering research. RAMMML 2023 received an overwhelm□ing response with more than 530 full paper submissions. After due and careful scrutiny, about 120 of them have been selected for presentation. The papers submitted have been reviewed by experts from renowned institutions, and subsequently, the authors have revised the papers, duly incorporating the suggestions of the reviewers. This has led to significant improvement in the quality of the contributions, Taylor & Francis publications, CRC Press have agreed to publish the selected proceedings of the conference in their book series of Advances in Mechanical Engineering and Interdisciplinary Sciences. This enables fast dissemina□tion of the papers worldwide and increases the scope of visibility for the research contributions of the authors.




Tribology of Metal Cutting


Book Description

Tribology of Metal Cutting deals with the emerging field of studies known as Metal Cutting Tribology. Tribology is defined as the science and technology of interactive surfaces moving relative each other. It concentrates on contact physics and mechanics of moving interfaces that generally involve energy dissipation. This book summarizes the available information on metal cutting tribology with a critical review of work done in the past. The book covers the complete system of metal cutting testing. In particular, it presents, explains and exemplifies a breakthrough concept of the physical resource of the cutting tool. It also describes the cutting system physical efficiency and its practical assessment via analysis of the energy partition in the cutting system. Specialists in the field of metal cutting will find information on how to apply the major principles of metal cutting tribology, or, in other words, how to make the metal cutting tribology to be useful at various levels of applications. The book discusses other novel concepts and principles in the tribology of metal cutting such as the energy partition in the cutting system; versatile metrics of cutting tool wear; optimal cutting temperature and its use in the optimization of the cutting process; the physical concept of cutting tool resource; and embrittlement action. This book is intended for a broad range of readers such as metal cutting tool, cutting insert, and process designers; manufacturing engineers involved in continuous process improvement; research workers who are active or intend to become active in the field; and senior undergraduate and graduate students of manufacturing. · Introduces the cutting system physical efficiency and its practical assessment via analysis of the energy partition in the cutting system.· Presents, explains and exemplifies a breakthrough concept of the physical resource of the cutting tool.· Covers the complete system of metal cutting testing.




Fundamentals of Aluminium Metallurgy


Book Description

Aluminium is an important metal in manufacturing, due to its versatile properties and the many applications of both the processed metal and its alloys in different industries. Fundamentals of aluminium metallurgy provides a comprehensive overview of the production, properties and processing of aluminium, and its applications in manufacturing industries.Part one discusses different methods of producing and casting aluminium, covering areas such as casting of alloys, quality issues and specific production methods such as high-pressure diecasting. The metallurgical properties of aluminium and its alloys are reviewed in Part two, with chapters on such topics as hardening, precipitation processes and solute partitioning and clustering, as well as properties such as fracture resistance. Finally, Part three includes chapters on joining, laser sintering and other methods of processing aluminium, and its applications in particular areas of industry such as aerospace.With its distinguished editor and team of expert contributors, Fundamentals of aluminium metallurgy is a standard reference for researchers in metallurgy, as well as all those involved in the manufacture and use of aluminium products. - Provides a comprehensive overview of the production, properties and processing of aluminium, and its applications in manufacturing industries - Considers many issues of central importance in aluminium production and utilization considering quality issues and design for fatigue growth resistance - Metallurgical properties of aluminium and its alloys are further explored with particular reference to work hardening and applications of industrial alloys




Materials, Design and Manufacturing for Lightweight Vehicles


Book Description

Research into the manufacture of lightweight automobiles is driven by the need to reduce fuel consumption to preserve dwindling hydrocarbon resources without compromising other attributes such as safety, performance, recyclability and cost. Materials, design and manufacturing for lightweight vehicles will make it easier for engineers to not only learn about the materials being considered for lightweight automobiles, but also to compare their characteristics and properties.Part one discusses materials for lightweight automotive structures with chapters on advanced steels for lightweight automotive structures, aluminium alloys, magnesium alloys for lightweight powertrains and automotive structures, thermoplastics and thermoplastic matrix composites and thermoset matrix composites for lightweight automotive structures. Part two reviews manufacturing and design of lightweight automotive structures covering topics such as manufacturing processes for light alloys, joining for lightweight vehicles, recycling and lifecycle issues and crashworthiness design for lightweight vehicles.With its distinguished editor and renowned team of contributors, Materials, design and manufacturing for lightweight vehicles is a standard reference for practicing engineers involved in the design and material selection for motor vehicle bodies and components as well as material scientists, environmental scientists, policy makers, car companies and automotive component manufacturers. - Provides a comprehensive analysis of the materials being used for the manufacture of lightweight vehicles whilst comparing characteristics and properties - Examines crashworthiness design issues for lightweight vehicles and further emphasises the development of lightweight vehicles without compromising safety considerations and performance - Explores the manufacturing process for light alloys including metal forming processes for automotive applications




Aluminum and Aluminum Alloys


Book Description

This one-stop reference is a tremendous value and time saver for engineers, designers and researchers. Emerging technologies, including aluminum metal-matrix composites, are combined with all the essential aluminum information from the ASM Handbook series (with updated statistical information).




Advances in Materials and Agile Manufacturing


Book Description

This book presents the select proceedings of International Conference on Production and Industrial Engineering (CPIE) 2023. It covers the current and latest developments in material and agile manufacturing. Various topics covered in this book include material characterization, agile manufacturing, materials and processing, joining processes (welding), surface engineering and coatings, sustainability in manufacturing, and many more. The book is useful for researchers and professionals working in manufacturing and materials engineering and other allied fields.




Handbook of Aluminum


Book Description

The Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes covers all aspects of the physical metallurgy, analytical techniques, and processing of aluminium, including hardening, annealing, aging, property prediction, corrosion, residual stress and distortion, welding, casting, forging, molten metal processing, machining, rolling, and extrusion. It also features an extensive, chapter-length consideration of quenching.