Macro, Micro, and Nano-Biosensors


Book Description

This book includes an international group of researchers who present the latest achievements in the field of enzyme, immune system, and microbial and nano-biosensors. It highlights the experimental evidence for formation of biological fuel cells (BFCs)-which has a dual purpose – as a device that produces electricity and the systems which produce it simultaneously cleaning up the environment from polluting organic compounds. Considering the work in the field of macro, micro and nano-biosensors, considerable attention is paid to the use of nanomaterials for the modification of working electrodes. Nanomaterials in some cases can significantly improve the parameters of analytical systems. Readers will be interested in the projection of the presented theoretical and experimental materials in the field of practical application of modern analytical developments. The presented results in many cases imply the possibility of using the created models of macro, micro and nano-biosensors, and biofuel elements in the field of health, and protection/restoration of the environment. It includes information about all existing types of transducers of signals in biosensors – electrochemical, optical and quantum-optics, thermoelectric, data of atomic force microscopy, piezoelectric, and more. On the basis of these principles, descriptions are given about the functioning of macro, micro and nano- biosensors for the detection of compounds used in medicine, detection of compounds that clog the environment, and thus affect human health, for compounds that are potentially the basis for the production of drugs, for the selection of compounds that have medicinal activity, for immunodetection, and to assess the quality of food. These questions form the basis of research carried out in the field of biosensors in the world. Since the described models of biosensors have high sensitivity, high measurement speed and selectivity, the described results attract the attention of both the ordinary reader and business class specialists who create and implement analytical technologies. This book is very useful for researchers in life sciences, chemical sciences, physics, and engineering. In addition, it will be useful for the persons working in industry. Advanced technologies specialists will be attracted by the novelty of the proposed solutions and their relevance and ease of implementation. Since the studies contain sections describing the parameters of different biosensors, BFCs, they are easily navigated into assessing the effectiveness of the practical use of the proposed device. The relevant sections indicate such characteristics as detection ranges, life span, type of biological material used, the method of formation of the bio-receptor part. These parameters are of interest to both developers of new models of biosensors and BFC, and their manufacturers.




Nanotechnology for Environmental Management


Book Description

"Nanotechnology for Environmental Management" is your gateway to the latest advancements in environmental science and technology. Edited by leading international scientists, this book delves into the diverse approaches and applications of nanomaterials and nanotechnologies, offering insights into their potential for environmental remediation, energy management, and sustainable development. Each chapter showcases cutting-edge innovations, making this book an essential reference for students, researchers, scientists, technicians, and professionals in environmental management and regulation. Explore the promises and challenges of nanotechnology in addressing environmental issues, and gain valuable perspectives on the future of sustainable development. With its thorough examination of state-of-the-art nanotechnological solutions, "Nanotechnology for Environmental Management" is your indispensable guide to navigating the complexities of environmental science and technology.




Handbook of Nanosensors


Book Description




Biosignal Processing


Book Description

Biosignal processing is an important tool in medicine. As such, this book presents a comprehensive overview of novel methods in biosignal theory, biosignal processing algorithms and applications, and biosignal sensors. Chapters examine biosignal processing for glucose detection, tissue engineering, electrocardiogram processing, soft tissue tomography, and much more. The book also discusses applications of artificial intelligence and machine learning for biosignal processing.




Novel Nanostructured Materials for Electrochemical Bio-sensing Applications


Book Description

Novel Nanostructured Materials for Electrochemical Bio-sensing Applications presents a detailed overview into the fabrication of electrochemical bio-sensing devices. The book addresses the challenges and opportunities relating to sustainable and biocompatible sensors from food, water and wearable applications to the various nanostructured biocompatible materials required for sensor fabrication. In addition, it explores the connection between nanomaterials and sensors and takes into consideration different and novel approaches such as toxic materials monitoring and health issues correlated with the use of nanomaterials. Users will find exciting insight into innovations in nanostructured electrochemical biosensing. By providing its audience with fundamentals, limitations, challenges, future perspectives and practical sustainability, this book will serve as a reference source researchers and engineers within analytical chemistry and electrochemistry. - Showcases the latest progress in new nanostructured materials, bio-sensing types and applications - Provides a comparative vision of electrochemical bio-sensing with other biosensors - Discusses the economics, commercialization, toxicity and life line aspects of electrochemical biosensors




Biosensors Nanotechnology


Book Description

BIOSENSORS NANOTECHNOLOGY The second edition of Biosensors Nanotechnology comprises 20 chapters and discusses a wide range of applications exploited by biosensors based on nanoparticles including new domains of bionics, power production and computing. The biosensor industry began as a small, niche activity in the 1980s and has since developed into a large, global industry. Nanomaterials have substantially improved not only non-pharmaceutical and healthcare uses, but also telecommunications, paper, and textile manufacturing. Biological sensing assists in the understanding of living systems and is used in a variety of sectors, including medicine, drug discovery, process control, environmental monitoring, food safety, military and personal protection. It allows for new opportunities in bionics, power generation and computing, all of which will benefit from a greater understanding of the bio-electronic relationship, as advances in communications and computational modeling enable us to reconsider how healthcare is offered and R&D and manufacturing are enhanced. In this fast-evolving discipline, the combination of nanoscale materials with biosensor technology has gained a lot of traction. Nanostructures have been used to increase the adherence of biosensor materials to electrode surfaces, print nano barcodes on biomaterials, increase the pace of bio-responses, and amplify the electric signal. Some of the topics discussed in the book include: Bioreceptors for Cells; Bioreceptors for Enzymatic Interactions; Dendrimer-Based Nanomaterials for Biosensors; Biosensors in 2D Photonic Crystals; Bioreceptors for Affinity Binding in Theranostic Development; Biosensors for Glucose Monitoring; Metal-Free Quantum Dots-Based Nanomaterials for Biosensors; Bioreceptors for Microbial Biosensors; Plasmonic Nanomaterials in Sensors; Magnetic Biosensors; Biosensors for Salivary Biomarker Detection of Cancer and Neurodegenerative Diseases; Design and Development of Fluorescent Chemosensors for the Recognition of Biological Amines and Their Cell Imaging Studies; Application of Optical Nanoprobes for Supramolecular Biosensing; In Vivo Applications for Nanomaterials in Biosensors; Biosensor and Nanotechnology for Diagnosis of Breast Cancer; Bioreceptors for Antigen–Antibody Interactions; Biosensors for Paint and Pigment Analysis; Bioreceptors for Tissue; Biosensors for Pesticide Detection; and Advances in Biosensor Applications for Agroproducts Safety. Audience The book is written for a large and broad readership including researchers, industry engineers, and university graduate students from diverse backgrounds such as chemistry, materials science, physics, pharmacy, medical science, biomedical engineering, electronics engineering, and nanotechnology.




Application of Nanomaterials in Chemical Sensors and Biosensors


Book Description

Recent advances in nanotechnology has led the nanomaterials into the realm of sensing applications. This descriptive book utilizes a multi-disciplinary approach to provide extensive information about sensors and elucidates the impact of nanotechnology on development of chemical and biosensors for diversified applications. The main focus of this book is not only the inclusion of various research works, which have already been reported in literature, but also to make a potential conclusion about the mechanism behind this. This book will serve as an invaluable tool for both frontline researchers and academicians to work towards the future development of nanotechnology in sensing devices.




Advances in Nanotechnology for Smart Agriculture


Book Description

The yield of major agricultural crops can be severely decreased due to the inappropriate application of commonly used harmful chemicals. Excessive agrochemicals in field application can negatively affect microbial populations and their diversity, which in turn ultimately affects plant growth. Thus, it is necessary to turn toward more eco-friendly approaches which equally protect crops as well as the desirable microbial populations of complex soil systems. Nanoparticles are considered as potential agents for the production and development of sustainable agriculture. Green synthesis of nanoparticles has gained attention as a useful measure to diminish the harmful effects associated with the old methods of nanoparticle synthesis. Advances in Nanotechnology for Smart Agriculture: Techniques and Applications illustrates the science and practical applications of nanoparticles for sustainable agriculture. Features: Examines the role of nanotechnology in agricultural best practices, including sustainable development, precision farming, and long-term soil health




Biosensors for Medical Applications


Book Description

Biomedical sensors are an essential tool in the detection and monitoring of a wide range of medical conditions from cancer to Parkinson's disease. Biosensors for medical applications provides a comprehensive review of established, cutting edge and future trends in biomedical sensors and their applications.Part one focuses on key principles and transduction approaches, reviewing electrochemical, piezoelectric and nano-sized biosensors. Impedence interrogated affinity biosensors for medical applications and practical applications of enzyme biosensors are explored, before part two goes on to review specific medical applications. Biosensors for DNA and RNA detection and characterization, disease biomarker detection, and the use of affibodies as an alternative to antibodies in cancer marker biosensors are investigated, along with biosensors for drug testing and discovery, non-invasive measurements, and wearable biosensors for medical applications.With its distinguished editor and international team of expert contributors, Biosensors for medical applications is an essential guide for all those involved in the research, design, production and use of medical biosensors. - Provides a comprehensive review of established, cutting edge and future trends in biomedical sensors and their applications - Examines key principles and transduction approaches, reviewing electrochemical, piezoelectric and nano-sized biosensors - Reviews biosensors for DNA and RNA detection and characterisation, disease biomarker detection, and the use of affibodies as an alternative to antibodies in cancer marker biosensors




Functionalized Nanomaterials for Biosensing and Bioelectronics Applications


Book Description

Functionalized Nanomaterials for Biosensing and Bioelectronics Applications: Trends and Challenges describes current and future opportunities for integrating the unique properties of two-dimensional nanomaterials with bioelectronic interfaces. Sections focus on background information and fundamental concepts, review the available functionalized nanomaterials and their properties, explore the integration of functionalized nanomaterials with bioelectronics, including available fabrication and characterization methods, electrical behavior at the interface, and design and synthesis guidelines, and review examples of microsystems where functionalized nanomaterials are being integrated with bioelectronics. This book is suitable for researchers and practitioners in academia and R&D working in materials science and engineering, analytical chemistry and related fields. - Introduces the most common functionalized nanomaterials and their morphologies, properties, and mechanisms for sensing applications - Reviews functionalization and fabrication methods and techniques for the integration of one- and two-dimensional materials for sensing applications - Addresses the most relevant applications of functionalized nanomaterials for biosensing and bioelectronics applications