Magnesium Batteries


Book Description

The quest for efficient and durable battery technologies is one of the key challenges for enabling the transition to renewable energy economies. Magnesium batteries, and in particular rechargeable non-aqueous systems, are an area of extensive opportunity and intense research. Rechargeable magnesium batteries hold numerous advantages over current lithium-ion batteries, namely the relative abundance of magnesium to lithium and the potential for magnesium batteries to greatly outperform their Li-ion counterparts. Magnesium Batteries comprehensively outlines the scientific and technical challenges in the field, covering anodes, cathodes, electrolytes and particularly promising systems such as the Mg–S cell. Edited by a leading figure in the field of electrochemical energy storage, with contributions from global experts, this book is a vital resource for students and researchers at all levels. Whether entering into the subject for the first time or extending their knowledge of battery materials across chemistry, physics, energy, engineering and materials science this book provides an ideal reference for anyone interested in the state-of-the-art and future of magnesium batteries.




Challenges of a Rechargeable Magnesium Battery


Book Description

This expert volume addresses the practical challenges which have so far inhibited the commercial realization of a rechargeable magnesium battery, placing the discussion within the context of the already established lithium-ion battery. Lithium-ion batteries are becoming commonplace in most power applications, starting with portable electronics and expanding to motor vehicles, stationary storage, and backup power. Since their introduction 25 years ago, they have slowly been replacing all other battery chemistries. As the technology has matured, it is nearing its theoretical limits in terms of energy density, so research and development worldwide is quickly shifting towards the study of new battery chemistries with cheaper components and higher energy densities. A very popular battery candidate which has generated a lot of recent interest is the magnesium rechargeable battery. Magnesium is five orders of magnitude more abundant than lithium, can move two electrons per cation, and is known to plate smoothly without any evidence of dendritic growth. However, many challenges remain to be overcome. This essential volume presents an unfiltered view on both the realistic promises and significant obstacles for this technology, providing key insights and proposed solutions.




Magnesium Battery


Book Description

What Is Magnesium Battery Batteries that use magnesium cations as the active charge carrying agents in solution and typically as the elemental anode of an electrochemical cell are referred to as magnesium batteries. Magnesium cations are found in magnesium. The chemistry of primary cells that are not rechargeable as well as rechargeable chemistry for secondary cells have both been researched. The production of magnesium primary cell batteries has been brought to a commercial level, and these batteries have found use as both reserve and general use batteries. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Magnesium battery Chapter 2: Lithium-ion battery Chapter 3: Lithium battery Chapter 4: Molten-salt battery Chapter 5: Lithium iron phosphate battery Chapter 6: Nanobatteries Chapter 7: Lithium-ion capacitor Chapter 8: Lithium-sulfur battery Chapter 9: Thin-film lithium-ion battery Chapter 10: Solid-state battery Chapter 11: Lithium-air battery Chapter 12: Potassium-ion battery Chapter 13: Sodium-ion battery Chapter 14: Peter Bruce Chapter 15: Aluminium-ion battery Chapter 16: Research in lithium-ion batteries Chapter 17: Magnesium sulfur battery Chapter 18: Glass battery Chapter 19: Calcium battery Chapter 20: Solid state silicon battery Chapter 21: History of the lithium-ion battery (II) Answering the public top questions about magnesium battery. (III) Real world examples for the usage of magnesium battery in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of magnesium battery' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of magnesium battery.




Rechargeable Batteries


Book Description

This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write each chapter of the book. The book covers not only lithium-ion batteries but also other batteries beyond lithium-ion, such as lithium-air, lithium-sulfur, sodium-ion, sodium-sulfur, magnesium-ion and liquid flow batteries.




Nonaqueous Electrochemistry


Book Description

An examination of applications of electrochemical techniques to many organic and inorganic compounds that are either unstable or insoluble in water. It focuses on the continuing drive toward miniaturization in electronics met by designs for high-energy density batteries (based on nonaqueous systems). It addresses applications to nonaqueous batteries, supercapacitators, highly sensitive reagents, and electroorganic and electroinorganic synthesis.




Electrochemical Devices for Energy Storage Applications


Book Description

This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research




Battery Reference Book


Book Description

Crompton's Battery Reference Book has become the standard reference source for a wide range of professionals and students involved in designing, manufacturing, and specifying products and systems that use batteries. This book is unique in providing extensive data on specific battery types, manufacturers and suppliers, as well as covering the theory - an aspect of the book which makes an updated edition important for every professional's library. The coverage of different types of battery is fully comprehensive, ranging from minute button cells to large installations weighing several hundred tonnes. Must-have information and data on all classes of battery in an accessible form Essential reference for design engineers in automotive and aerospace applications, telecommunications equipment, household appliances, etc. Informs you of developments over the past five years




Lithium Air Battery


Book Description

What Is Lithium Air Battery The lithium-air battery, also known as the Li-air battery, is a kind of metal-air electrochemical cell or battery chemistry. It works by inducing a flow of current by the oxidation of lithium at the anode and the reduction of oxygen at the cathode. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Lithium-air battery Chapter 2: Electrode Chapter 3: Lithium-ion battery Chapter 4: Zinc-air battery Chapter 5: Nanobatteries Chapter 6: Lithium-ion capacitor Chapter 7: Lithium-sulfur battery Chapter 8: Thin-film lithium-ion battery Chapter 9: Solid-state battery Chapter 10: Nanoarchitectures for lithium-ion batteries Chapter 11: Metal-air electrochemical cell Chapter 12: Potassium-ion battery Chapter 13: Separator (electricity) Chapter 14: Sodium-ion battery Chapter 15: Peter Bruce Chapter 16: Aluminium-ion battery Chapter 17: Research in lithium-ion batteries Chapter 18: Magnesium battery Chapter 19: Glass battery Chapter 20: Calcium battery Chapter 21: History of the lithium-ion battery (II) Answering the public top questions about lithium air battery. (III) Real world examples for the usage of lithium air battery in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of lithium air battery' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of lithium air battery.




Lithium Iron Phosphate Battery


Book Description

What Is Lithium Iron Phosphate Battery The lithium iron phosphate battery, often known as an LFP battery, is a form of lithium-ion battery that uses lithium iron phosphate as the cathode material. The anode of this battery is made up of a graphitic carbon electrode that has a metallic backing. The energy density of an LFP battery is lower than that of other common lithium ion battery types such as Nickel Manganese Cobalt (NMC) and Nickel Cobalt Aluminum (NCA), and it also has a lower operating voltage; CATL's LFP batteries are currently at 125 watt hours (Wh) per kg, up to possibly 160 Wh/kg with improved packing technology, while BYD's LFP batteries are at 150 Wh/kg, which is compared to over 300 Notably, the energy density of the Panasonic "2170" batteries that will be utilized in the Tesla Model 3 in the year 2020 is around 260 Wh/kg, which is approximately 70 percent of the value of its "pure chemicals." How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Lithium iron phosphate battery Chapter 2: Lithium-ion battery Chapter 3: Rechargeable battery Chapter 4: Lithium polymer battery Chapter 5: John B. Goodenough Chapter 6: Lithium iron phosphate Chapter 7: Electric vehicle battery Chapter 8: Lithium-titanate battery Chapter 9: Solid-state battery Chapter 10: Lithium-air battery Chapter 11: Sodium-ion battery Chapter 12: Aluminium-ion battery Chapter 13: Comparison of commercial battery types Chapter 14: Research in lithium-ion batteries Chapter 15: Lithium hybrid organic battery Chapter 16: Magnesium battery Chapter 17: Glass battery Chapter 18: Lithium nickel cobalt aluminium oxides Chapter 19: Lithium nickel manganese cobalt oxides Chapter 20: Arumugam Manthiram Chapter 21: History of the lithium-ion battery (II) Answering the public top questions about lithium iron phosphate battery. (III) Real world examples for the usage of lithium iron phosphate battery in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of lithium iron phosphate battery' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of lithium iron phosphate battery.




Metal-Air and Metal-Sulfur Batteries


Book Description

Metal–air and metal–sulfur batteries (MABs/MSBs) represent one of the most efficient-energy storage technologies, with high round trip efficiency, a long life cycle, fast response at peak demand/supply of electricity, and decreased weight due to the use of atmospheric oxygen as one of the main reactants. This book presents an overview of the main MABs/MSBs from fundamentals to applications. Recent technological trends in their development are reviewed. It also offers a detailed analysis of these batteries at the material, component, and system levels, allowing the reader to evaluate the different approaches of their integration. The book provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Each chapter focuses on a particular battery type including zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, and vanadium–air redox flow batteries, and metal–sulfur batteries. Features the most recent advances made in metal–air/metal–sulfur batteries. Describes cutting-edge materials and technology for metal–air/metal–sulfur batteries. Includes both fundamentals and applications, which can be used to guide and promote materials as well as technology development for metal–air/metal–sulfur batteries. Provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Covers a variety of battery types in depth, such as zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, vanadium–air redox flow batteries, and metal–sulfur batteries.