Magnetism in Heavy Fermion Systems


Book Description

Magnetism in Heavy Fermion Systems is a review volume which covers an important subset of topics in the field of heavy fermion and non-Fermi liquid physics. It summarizes much of the experimental information in these areas, and includes an article which discusses theoretical interpretations of the complex magnetic behavior of heavy fermion systems. The topics covered include heavy fermion superconductivity, muon spin relaxation in small-moment heavy fermions, neutron scattering from heavy fermions, random localized magnetism in heavy fermions, and magnetism in Pr-containing cuprates. One feature of the book which should be helpful to graduate students and new workers in the field is the extensive references and a separate list of review articles.




Magnetism In Heavy Fermion Systems


Book Description

Magnetism in Heavy Fermion Systems is a review volume which covers an important subset of topics in the field of heavy fermion and non-Fermi liquid physics. It summarizes much of the experimental information in these areas, and includes an article which discusses theoretical interpretations of the complex magnetic behavior of heavy fermion systems. The topics covered include heavy fermion superconductivity, muon spin relaxation in small-moment heavy fermions, neutron scattering from heavy fermions, random localized magnetism in heavy fermions, and magnetism in Pr-containing cuprates. One feature of the book which should be helpful to graduate students and new workers in the field is the extensive references and a separate list of review articles.




The Kondo Problem to Heavy Fermions


Book Description

The behaviour of magnetic impurities in metals has posed problems to challenge the condensed matter theorist over the past 30 years. This book deals with the concepts and techniques which have been developed to meet this challenge, and with their application to the interpretation of experiments. This book will be of interest to condensed matter physicists, particularly those interested in strong correlation problems. The detailed discussions of advanced many-body techniques should make it of interest to theoretical physicists in general.




30 Years of the Landau Institute


Book Description

The Landau Institute for Theoretical Physics was created in 1965 by a group of LD Landau's pupils. Very soon, it was widely recognized as one of the world's leading centers in theoretical physics. According to Science Magazine, the Institute in the eighties had the highest citation index among all the scientific organizations in the former Soviet Union. This collection of the best papers of the Institute reflects the development of the many directions in the exact sciences during the last 30 years. The reader can find the original formulations of well-known notions in condensed matter theory, quantum field theory, mathematical physics and astrophysics, which were introduced by members of the Landau Institute.The following are some of the achievements described in this book: monopoles (A Polyakov), instantons (A Belavin et al.), weak crystallization (S Brazovskii), spin superfluidity (I Fomin), finite band potentials (S Novikov) and paraconductivity (A Larkin, L Aslamasov).




Encyclopedia of the Alkaline Earth Compounds


Book Description

Encyclopedia of the Alkaline Earth Compounds is a compilation describing the physical and chemical properties of all of the alkaline earth compounds that have been elucidated to date in the scientific literature. These compounds are used in applications such as LEDs and electronic devices such as smart phones and tablet computers. Preparation methods for each compound are presented to show which techniques have been successful. Structures and phase diagrams are presented where applicable to aid in understanding the complexities of the topics discussed. With concise descriptions presenting the chemical, physical and electrical properties of any given compound, this subject matter will serve as an introduction to the field. This compendium is vital for students and scientific researchers in all fields of scientific endeavors, including non-chemists. 2013 Honorable Mention in Chemistry & Physics from the Association of American Publishers' PROSE Awards Presents a systematic coverage of all known alkaline earth inorganic compounds and their properties Provides a clear, consistent presentation based on groups facilitatating easy comparisons Includes the structure of all the compounds in high quality full-color graphics Summarizes all currently known properties of the transition metals compounds Lists the uses and applications of these compounds in electronics, energy, and catalysis







Quantum Probability Communications


Book Description

Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will be engaged, informed and inspired by the contents of these two volumes. An extensive bibliography containing the references from all the lectures is included in Volume 12. Contents: .: Extensions of Quantum Stochastic Calculus (S Attal); Quantum It; Algebras: Axioms, Representations, Decompositions (V Belavkin); Free Probability for Probabilists (P Biane); Conditional Expectations on von Neumann Algebras (C Cecchini); Classical Probability Theory: An Outline of Stochastic Integrals and Diffusions (M emery); Quantum Stochastic Differential Equations (F Fagnola); Canonical Commutation and Anticommutation Relations (M Fannes); Quantum and Classical Stochastic Calculus (A Holevo); An Introduction to Quantum Stochastic Calculus and Some of Its Applications (R Hudson); Stationary Processes in Quantum Probability (B Kmmerer). Readership: Mathematicians, probabilists and mathematical physicists."




Heavy-Fermion Systems


Book Description

The book on Heavy-Fermion Systems is a part of the Book series "Handbook of Metal Physics", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states including superconducting, antiferromagnetic, paramagnetic or semiconducting. Some display unusual magnetic properties such as magnetic quantum critical point and metamagnetism. This book is essentially a summary as well as a critical review of the theoretical and experimental work done on Heavy Fermions.· Extensive research references.· Comprehensive review of a very rapidly growing number of theories.· Summary of all important experiments.· Comparison with other highly correlated systems such as High-Tc Superconductors.· Possible Technological applications.




Strongly Correlated Fermi Systems


Book Description

This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the “missing” instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors’ own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.