Magneto-ionic Coupling in an Inhomogeneous Medium


Book Description

The propagation of electromagnetic waves in a horizontally stratified layer of gyrotropic medium is discussed. Derivation of a comprehensive representation for magneto-ionic coupling coefficients allows interpretation of the physical significance of the coupling. Introduction of an invariant quantity for an inhomogeneous medium becomes an important guide for numerical solutions of the wave equation. Numerical results of magneto-ionic coupling coefficients are presented. Based on region properties, characteristic wave types are defined: for the isotropic region, linearly polarized waves are used; for the anisotropic region, elliptically polarized waves generally are applied. (Author).




Numerical Solution of Full-wave Equation with Mode-coupling


Book Description

A new method for the numerical solution of the wave equation governing the propagation of electromagnetic waves in a horizontally stratified, inhomogeneous, anisotropic layer is described. The wave equation is a homogeneous set of four linear differential equations of the first order. In the computer calculation, all singularities of the wave equation are removed in practical cases and a proper step-size based on the gradients of the medium properties is programmed automatically. The multiplicative nature of the solutions facilitates the procedure. Modification of solutions from one height to another is expressed in explicit form on the assumption that the propagation tensor varies linearly with height in each step of integration. In the mathematical development, matrix operations are extensively used in order to achieve a general representation. Four independent solutions of the wave equation are derived. During an ordinary integration for an inhomogeneous medium, a degradation occurs inevitably in the degree of linear independence among special solutions. This cause is analyzed. To obtain a complete set of special solutions with good linear independence, a particular device is developed for general applications. This method has been programmed for computer calculation by an IBM 7090. The resultant wave fields and wave polarizations for the independent modes are shown for a model ionosphere. The resultant wave is described as a 'scrambling' of four characteristic waves. The 'scrambling' state is visualized at each height. (Author).







Space Electricity


Book Description




Effects of Experimental Parameters on Thermoluminescence of a Type II-a Diamond


Book Description

Thermoluminescence provides a method for studying properties of those crystalline imperfections which behave as electron traps and recombination centers in wide bandgap materials. This approach, however, has been used relatively little, possibly due to the fact that the shapes and intensities of thermoluminescent glow curves are functions of several experimental parameters and are often complicated by the overlapping of a number of individual glow peaks. In the present work, experimental parameters were isolated and some of their effects on thermoluminescent glow curves were analyzed. This yielded information on activation energies associated with trapping levels, the nature of the kinetics involved in electron transitions, and electron retrapping. A Type II-a diamond, which has a wide distribution of thermoluminescent glow peaks, was used in this work. (Author).













Hydromagnetic Ionizing Waves


Book Description

A theory of hydromagnetic ionizing waves has been developed which is valid in the region in which gas pressure is negligible, compared with magnetic pressure. The theory takes into account the energy expended in partial ionization of the gas behind the wave. The usual high conductivity boundary condition behind the wave is not employed. The electric field in front of the wave is taken as a parameter. Results of this theory are compared with available experimental measurements, and show good agreement. (Author).