Magnetoconvection


Book Description

The last thirty years have seen great leaps forward in the subject of magnetoconvection. Computational techniques can now explain exotic nonlinear behaviour, transition to chaos and the formation of structures that can be observed on the surface of the Sun. Here, two leading experts present the current state of knowledge of the subject. They provide a mathematical and numerical treatment of the interactions between electrically conducting fluids and magnetic fields that lead to the complex structures and rich behaviour observed on the Sun and other stars, as well as in the interiors of planets like the Earth. The authors' combined analytical and computational approach provides a model for the study of a wide range of related problems. The discussion includes bifurcation theory, chaotic behaviour, pattern formation in two and three dimensions, and applications to geomagnetism and to the properties of sunspots and other features at the solar surface.







Advances in Fluid Dynamics


Book Description

This book comprises selected peer-reviewed proceedings of the International Conference on Applications of Fluid Dynamics (ICAFD 2018) organized by the School of Advanced Sciences, Vellore Institute of Technology, India, in association with the University of Botswana and the Society for Industrial and Applied Mathematics (SIAM), USA. With an aim to identify the existing challenges in the area of applied mathematics and mechanics, the book emphasizes the importance of establishing new methods and algorithms to address these challenges. The topics covered include diverse applications of fluid dynamics in aerospace dynamics and propulsion, atmospheric sciences, compressible flow, environmental fluid dynamics, control structures, viscoelasticity and mechanics of composites. Given the contents, the book is a useful resource for students, researchers as well as practitioners.




Multi-Wavelength Investigations of Solar Activity (IAU S223)


Book Description

These Proceedings present the most recent results from the highly successful international solar space missions (SOHO, CORONAS-F, TRACE, RHESSI, YOHKOH) and ground observatories around the Earth, reported at the IAU Symposium 223 held in St. Petersburg, Russia, June 14-19, 2004. These include discussions of the current theories of solar dynamics and activity, new constraints provided by the multi-wavelength observations of the Sun from the interior to the heliosphere, as well as discussions of future coordinated plans and efforts of multi-wavelength investigations of the Sun. The Proceedings contain the material of seven plenary sessions and three round-table discussions




Magnetoconvection in HCLL Blankets


Book Description




Magnetohydrodynamics of the Sun


Book Description

This advanced textbook reviews the complex interaction between the Sun's plasma atmosphere and its magnetic field.




Statistical and Condensed Matter Physics


Book Description

Statistical & Condensed Matter Physics - Over the Horizon




Reports on Astronomy


Book Description

IAU Transactions are published as a volume corresponding to each General Assembly. Volume A is produced prior to the Assembly and contains Reports on Astronomy, prepared by each Commission President. The intention is to summarize the astronomical results that have affected the work of the Commission since the production of the previous Reports up to a time which is about one year prior to the General Assembly. Volume B is produced after the Assembly and contains accounts of Commission Meetings which were held, together with other material. The reports included in the present volume range from outline summaries to lengthy compilations and references. Most reports are in English.




Fluid Dynamics and Dynamos in Astrophysics and Geophysics


Book Description

The increasing power of computer resources along with great improvements in observational data in recent years have led to some remarkable and rapid advances in astrophysical fluid dynamics. The subject spans three distinct but overlapping communities whose interests focus on (1) accretion discs and high-energy astrophysics; (2) solar, stellar, and




Solar System Magnetic Fields


Book Description

In September 1984 a Summer School on Solar System Plasmas was held at Imperial College with the support of the Science and Engineering Research Council. An excellent group of lecturers was assembled to give a series of basic talks on the various aspects of the subject, aimed at Ph. D. students or researchers from related areas wanting to learn about the plasma physics of the solar system. The students were so appreciative of the lectures that it was decided to write them up as the present book. Traditionally, different areas of solar system science, such as solar and magnetospheric physics, have been studied by separate communities with little contact. However, it has become clear that many common themes cut right across these distinct topics, such as magnetohydrodynamic instabilities and waves, magnetic reconnect ion , convection, dynamo activity and particle acceleration. The plasma parameters may well be quite different in the Sun's atmosphere, a cometary tailor Jupiter's magnetosphere, but many of the basic processes are similar and it is by studying them in different environments that we come to understand them more deeply. Furthermore, direct in situ measurements of plasma properties at one point in the solar wind or the magnetosphere complement the more global view by remote sensing of a similar phenomenon at the Sun.