Chemistry of the Main Group Elements


Book Description

The main group elements represent the most prevalent elements in the Earth's crust, as well as most of the key elements of life, and have enormous industrial, economic, and environmental importance. In this regard an understanding of the chemistry of the main group elements is vital for students within science, engineering, and medicine; however, it is hoped that those who make political and economic decisions would make better ones (or at least more responsible ones) if they had a fraction of the knowledge of the world around them.







Early Main Group Metal Catalysis


Book Description

Early Main Group Metal Catalysis gives a comprehensive overview of catalytic reactions in the presence of group 1 and group 2 metals. Chapters are ordered to reaction type, contain educational elements and deal with concepts illustrated by examples that cover the main developments. After a short introduction on polar organometallic chemistry and synthesis of early main group metal complexes, a variety of catalytic reactions are described, e.g. polymerization of alkenes, hydroamination and phosphination reactions, hydrosilylation, hydroboration and hydrogenation catalysis, as well as enantioselective and Lewis-acid catalysis. The book addresses organic chemists and researchers in industry interested in the state-of-the-art and new possibilities of early main group metal catalysis as well as newcomers to the field. Written by a team of leaders in the field, it is a very welcome addition to the area of main group metal chemistry, and to the field of catalysis.




Main-Group Metal Organometallics in Organic Synthesis


Book Description

The individual chapters in this volume cover the scope and impact of main group organometallic compounds and reagents on organic synthesis during the last ten to fifteen years. In a number of chapters, topics are dealt with in detail that either were not covered at all in COMC (eg selenium, tellurium) or were given scant attention (eg oxymercuration, organoantimony compounds). Certain topics, like directed metallation and LiKOR bases have only achieved prominence in synthesis in the last ten years, and are now reviewed by leading experts.




Main Group Metals in Organic Synthesis


Book Description

This is the first handbook to cover in detail all aspects of this fascinating field of chemistry. In this handy two-volume set, readers will instantly find the information they need, clearly structured according to the individual metals in the main groups, hitherto only accessible after much time-consuming research. The result is in indispensable aid for everyday work in the lab. Alongside all the classical organic reactions, this book focuses on the modern variations as well as novel, current reactions in organic synthesis that are closely linked to main group elements - both stoechiometric and catalytic. With this work the two prizewinning editors have succeeded in producing a comprehensive compendium of the main group metals as reagents for organic reactions. In short, this is a must for every organic chemist, whether as an efficient introduction to current research, for retaining an overview or for looking up detailed information.




The Group 13 Metals Aluminium, Gallium, Indium and Thallium


Book Description

The last two decades have seen a renaissance in interest in the chemistry of the main group elements. In particular research on the metals of group 13 (aluminium, gallium, indium and thallium) has led to the synthesis and isolation of some very novel and unusual molecules, with implications for organometallic synthesis, new materials development, and with biological, medical and, environmental relevance. The Group 13 Metals Aluminium, Gallium, Indium and Thallium aims to cover new facts, developments and applications in the context of more general patterns of physical and chemical behaviour. Particular attention is paid to the main growth areas, including the chemistry of lower formal oxidation states, cluster chemistry, the investigation of solid oxides and hydroxides, advances in the formation of III-V and related compounds, the biological significance of Group 13 metal complexes, and the growing importance of the metals and their compounds in the mediation of organic reactions. Chapters cover: general features of the group 13 elements group 13 metals in the +3 oxidation state: simple inorganic compounds formal oxidation state +3: organometallic chemistry formal oxidation state +2: metal-metal bonded vs. mononuclear derivatives group 13 metals in the +1 oxidation state mixed or intermediate valence group 13 metal compounds aluminium and gallium clusters: metalloid clusters and their relation to the bulk phases, to naked clusters, and to nanoscaled materials simple and mixed metal oxides and hydroxides: solids with extended structures of different dimensionalities and porosities coordination and solution chemistry of the metals: biological, medical and, environmental relevance III-V and related semiconductor materials group 13 metal-mediated organic reactions The Group 13 Metals Aluminium, Gallium, Indium and Thallium provides a detailed, wide-ranging, and up-to-date review of the chemistry of this important group of metals. It will find a place on the bookshelves of practitioners, researchers and students working in inorganic, organometallic, and materials chemistry.




Advanced Inorganic Chemistry


Book Description

Advanced Inorganic Chemistry: Applications in Everyday Life connects key topics on the subject with actual experiences in nature and everyday life. Differing from other foundational texts with this emphasis on applications and examples, the text uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes. From this foundation, the text explores more advanced topics, such as: Ligands and Ligand Substitution Processes with an emphasis on Square-Planar Substitution and Octahedral Substitution Reactions in Inorganic Chemistry and Transition Metal Complexes, with a particular focus on Crystal-Field and Ligand-Field Theories, Electronic States and Spectra and Organometallic, Bioinorganic Compounds, including Carboranes and Metallacarboranes and their applications in Catalysis, Medicine and Pollution Control. Throughout the book, illustrative examples bring inorganic chemistry to life. For instance, biochemists and students will be interested in how coordination chemistry between the transition metals and the ligands has a direct correlation with cyanide or carbon monoxide poisoning (strong-field Cyanide or CO ligand versus weak-field Oxygen molecule). - Engaging discussion of key concepts with examples from the real world - Valuable coverage from the foundations of chemical bonds and stereochemistry to advanced topics, such as organometallic, bioinorganic, carboranes and environmental chemistry - Uniquely begins with a focus on the shapes (geometry) dictating intermolecular forces of attractions, leading to reactivity between molecules of different shapes




Main Group Chemistry


Book Description

Textbooks.




Main Group Metal Coordination Polymers


Book Description

Coordination polymer is a general term used to indicate an infinite array composed of metal ions which are bridged by certain ligands among them. This incorporates a wide range of architectures including simple one-dimensional chains with small ligands to large mesoporous frameworks. Generally, the formation process proceeds automatically and, therefore, is called a self-assembly process. In general, the type and topology of the product generated from the self-assembly of inorganic metal nodes and organic spacers depend on the functionality of the ligand and valences and the geometric needs of the metal ions used. In this book the authors explain main group metal coordination polymer in bulk and nano size with some of their application, synthesis method and etc, The properties of these efficient materials are described at length including magnetism (long-range ordering, spin crossover), porosity (gas storage, ion and guest exchange), non-linear optical activity, chiral networks, reactive networks, heterogeneous catalysis, luminescence, multifunctional materials and other properties.




Organotransition Metal Chemistry: From Bonding to Catalysis


Book Description

Based on Collman et al.'s best-selling classic book, Principles and Applications of Organotransition Metal Chemistry, Hartwig's text consists of new or thoroughly updated and restructured chapters and provides an in-depth view into mechanism, reaction scope, and applications. It covers the most important developments in the field over the last twenty years with great clarity with a selective, but thorough and authoritative coverage of the fundamentals of organometallic chemistry, the elementary reactions of these complexes, and many catalytic processes occurring through organometallic intermediates, making this the Organotransition Metal Chemistry text for a new generation of scientists.