Book Description
"This book provides an overall view of the emerging field of complex data processing, highlighting the similarities between the different data, issues and approaches"--Provided by publisher.
Author : Darmont, Jrme
Publisher : IGI Global
Page : 433 pages
File Size : 30,43 MB
Release : 2006-03-31
Category : Computers
ISBN : 1591406579
"This book provides an overall view of the emerging field of complex data processing, highlighting the similarities between the different data, issues and approaches"--Provided by publisher.
Author :
Publisher :
Page : 780 pages
File Size : 25,31 MB
Release : 1976
Category : Weights and measures
ISBN :
Author : Dzejla Medjedovic
Publisher : Simon and Schuster
Page : 302 pages
File Size : 33,98 MB
Release : 2022-08-16
Category : Computers
ISBN : 1638356564
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Author : Aditya Pratap Bhuyan
Publisher : Aditya Pratap Bhuyan
Page : 328 pages
File Size : 28,54 MB
Release : 2024-08-19
Category : Computers
ISBN :
Welcome to "Data Structures with Go: A Comprehensive Guide," your gateway to mastering data structures using the Go programming language. In today’s fast-paced software development world, a solid grasp of data structures is essential for creating efficient, scalable, and high-performance applications. This book provides a thorough exploration of data structures through Go, a language known for its simplicity, performance, and robust concurrency support. Why This Book? Data structures are fundamental to computer science and software engineering. They determine how data is organized, stored, and manipulated, significantly impacting the performance and efficiency of algorithms. With Go’s growing popularity for its clean syntax and effective concurrency model, it is an excellent choice for learning and implementing data structures. This book leverages Go’s features to offer practical insights into data structures, making it a valuable resource for developers of all skill levels. What You Will Learn Fundamentals of Data Structures: The book starts with an introduction to data structures, highlighting their importance and role in software development. You’ll explore basic data types in Go and their applications in various data structures. Arrays and Slices: Delve into arrays and slices, foundational structures in Go. Learn how to declare, initialize, and manipulate them, and understand their performance implications and practical uses. Linked Lists: Explore singly and doubly linked lists, including their structures, operations, and Go implementations. Understand how linked lists compare to arrays and slices and their advantages and limitations. Stacks and Queues: Study these essential linear data structures. Learn about stack (LIFO) and queue (FIFO) operations and their implementations in Go. The chapter also covers variants like deques and priority queues. Trees: Understand hierarchical data structures such as binary trees, binary search trees (BST), AVL trees, and Red-Black trees. Learn about tree operations, traversal techniques, and their Go implementations. Graphs: Learn about graph representations, including adjacency matrices and adjacency lists, and explore directed and undirected graphs. This chapter also covers common algorithms like Depth-First Search (DFS) and Breadth-First Search (BFS). Hashing: Discover hashing techniques, hash tables, and collision handling strategies. Implement hash tables in Go and understand their practical applications. Advanced Data Structures: Dive into specialized data structures such as heaps, tries, suffix trees, and Bloom filters. Learn about their implementations and use cases. Algorithms and Data Structures in Practice: Apply data structures to real-world problems. This chapter focuses on sorting and searching algorithms, optimization techniques, and performance profiling in Go. Real-World Applications: Explore how data structures are used in practical projects. Study case studies, best practices, and design patterns for implementing data structures in Go-based systems. Who Should Read This Book? This book caters to: Beginners: Those new to Go or data structures will find a clear, structured introduction. Intermediate Developers: Readers with some experience can deepen their knowledge and tackle advanced topics. Experienced Professionals: Those looking to explore Go or stay updated with modern practices will find valuable insights and practical examples. Learning Approach Emphasizing hands-on learning, the book includes practical examples, exercises, and real-world case studies to reinforce understanding and encourage experimentation. By working through these exercises, you will gain practical experience and a deeper grasp of data structures in Go. "Data Structures with Go: A Comprehensive Guide" is your key to mastering essential computer science principles and applying them effectively in modern applications. Dive in and discover how Go can enhance your skills in building robust, efficient, and scalable systems. Aditya
Author : Dinesh P. Mehta
Publisher : Taylor & Francis
Page : 1120 pages
File Size : 19,93 MB
Release : 2018-02-21
Category : Computers
ISBN : 1498701884
The Handbook of Data Structures and Applications was first published over a decade ago. This second edition aims to update the first by focusing on areas of research in data structures that have seen significant progress. While the discipline of data structures has not matured as rapidly as other areas of computer science, the book aims to update those areas that have seen advances. Retaining the seven-part structure of the first edition, the handbook begins with a review of introductory material, followed by a discussion of well-known classes of data structures, Priority Queues, Dictionary Structures, and Multidimensional structures. The editors next analyze miscellaneous data structures, which are well-known structures that elude easy classification. The book then addresses mechanisms and tools that were developed to facilitate the use of data structures in real programs. It concludes with an examination of the applications of data structures. Four new chapters have been added on Bloom Filters, Binary Decision Diagrams, Data Structures for Cheminformatics, and Data Structures for Big Data Stores, and updates have been made to other chapters that appeared in the first edition. The Handbook is invaluable for suggesting new ideas for research in data structures, and for revealing application contexts in which they can be deployed. Practitioners devising algorithms will gain insight into organizing data, allowing them to solve algorithmic problems more efficiently.
Author :
Publisher :
Page : 484 pages
File Size : 18,13 MB
Release : 1970
Category : Physics
ISBN :
Author : Shi-kuo Chang
Publisher : World Scientific
Page : 361 pages
File Size : 15,71 MB
Release : 2003-09-29
Category : Computers
ISBN : 9814486159
This is an excellent, up-to-date and easy-to-use text on data structures and algorithms that is intended for undergraduates in computer science and information science. The thirteen chapters, written by an international group of experienced teachers, cover the fundamental concepts of algorithms and most of the important data structures as well as the concept of interface design. The book contains many examples and diagrams. Whenever appropriate, program codes are included to facilitate learning.This book is supported by an international group of authors who are experts on data structures and algorithms, through its website at www.cs.pitt.edu/~jung/GrowingBook/, so that both teachers and students can benefit from their expertise.
Author :
Publisher :
Page : 736 pages
File Size : 43,67 MB
Release : 1986
Category : Industrial engineering
ISBN :
Author :
Publisher :
Page : 1112 pages
File Size : 50,43 MB
Release : 1998
Category : Patents
ISBN :
Author : Cybellium Ltd
Publisher : Cybellium Ltd
Page : 223 pages
File Size : 30,36 MB
Release :
Category : Computers
ISBN :
In this technologically interconnected world, data flows incessantly, traversing systems, applications, and platforms. The efficient exchange of this data is a core pillar in the architecture of modern software systems, and mastering data serialization and formats is essential for ensuring optimal communication and collaboration across the digital realm. "Mastering Data Serialization and Formats" delves deep into the intricacies of data serialization and various formats, serving as a comprehensive resource for both beginners and experienced professionals seeking to enhance their understanding of this critical subject. Whether you are a software developer, data engineer, or technology enthusiast, this book will empower you to harness the full potential of data serialization for your projects. Key Features: 1. Foundational Concepts: Lay the groundwork with a clear and concise explanation of what data serialization is, why it's important, and how it fits into the broader landscape of data management. 2. Exploration of Formats: Delve into the world of data formats, from well-known ones like JSON and XML to more specialized formats such as Protocol Buffers, Avro, and MessagePack. Understand the strengths, weaknesses, and best use cases for each format, enabling you to make informed decisions when selecting the most appropriate format for your specific needs. 3. Efficiency and Performance: Learn strategies to optimize data serialization for efficiency and performance. Discover techniques for reducing data size, enhancing data transmission speed, and minimizing resource consumption. 4. Cross-Language Communication: Grasp the intricacies of enabling seamless communication between applications written in different programming languages. Uncover the challenges and solutions for ensuring compatibility and interoperability across language barriers. 5. Real-World Use Cases: Gain insights into how various industries and domains leverage data serialization to solve complex challenges. From microservices architecture to IoT ecosystems, learn how serialization is pivotal in building robust and scalable systems. 6. Security and Compatibility: Explore best practices for securing serialized data and ensuring backward and forward compatibility. Understand the importance of versioning, schema evolution, and data validation to maintain the integrity of your data. 7. Hands-On Tutorials: Put theory into practice with hands-on tutorials that guide you through implementing data serialization in different programming languages. Develop practical skills that you can apply immediately to your projects. 8. Future Trends: Get a glimpse of the future of data serialization and formats. Stay up-to-date with emerging technologies and standards that are shaping the data landscape, such as GraphQL and Apache Arrow. In a world where data has become the lifeblood of innovation, mastering the art of data serialization and understanding various formats is a critical skill set for professionals across industries. Whether you're building web applications, designing APIs, working on microservices architecture, or creating IoT solutions, the ability to effectively exchange data is a differentiator that can elevate your projects from good to exceptional. "Mastering Data Serialization and Formats" is your roadmap to becoming fluent in the language of data exchange. Through comprehensive explanations, practical examples, and insightful case studies, this book equips you with the tools you need to conquer the challenges of data serialization and formats, unlocking new avenues for innovation and success. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com