Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques


Book Description

This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.







Future of Sustainable Agriculture in Saline Environments


Book Description

Food production on present and future saline soils deserves the world’s attention particularly because food security is a pressing issue, millions of hectares of degraded soils are available worldwide, freshwater is becoming increasingly scarce, and the global sea-level rise threatens food production in fertile coastal lowlands. Future of Sustainable Agriculture in Saline Environments aims to showcase the global potential of saline agriculture. The book covers the essential topics, such as policy and awareness, soil management, future crops, and genetic developments, all supplemented by case studies that show how this knowledge has been applied. It offers an overview of current research themes and practical cases focused on enhancing food production on saline lands. FEATURES Describes the critical role of the revitalization of salt-degraded lands in achieving sustainability in agriculture on a global scale Discusses practical solutions toward using drylands and delta areas threatened by salinity for sustainable food production Presents strategies for adaptation to climate change and sea-level rise through food production under saline conditions Addresses the diverse aspects of crop salt tolerance and microbiological associations Highlights the complex problem of salinity and waterlogging and safer management of poor-quality water, supplemented by case studies A PDF version of this book is available for free in Open Access at www.taylorfrancis.com. It has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.




Soil Salinity under Irrigation


Book Description

The importance of irrigation in the world's agriculture is rapidly increasing. Although it is practised on a large scale mainly in arid and semi-arid zones, supplementary irrigation is becoming popular in semi-humid regions as well. The record of irrigation speaks for itself in terms of increased crop production. However, the question remains as to how permanent the achievement may be. Judging from history, it seems that irrigation eventually failed in many regions because the knowledge and technology available to society at the time were incapable of coping with the problems created. Undoubtedly soil salinity is the most prevalent and widespread problem limiting crop productivity in irrigated agriculture. It has, therefore, attracted the attention of the scientific community since the advent of modern agronomic research. Through the past six to seven decades a considerable body of information has been accumulated, which has promoted the understanding of the principles involved and helped to develop the technology for coping with the problems. Our present knowledge, if judiciously applied, is adequate for coping with many of the salinity problems resulting from mismanagement of irrigation and drainage. But for this knowledge to be used, it has to be generally known and understood and be re-examined from time to time.




Towards the Rational Use of High Salinity Tolerant Plants


Book Description

The Symposium on high salinity tolerant plants, held at the University of Al Ain in December 1990, dealt primarily with plants tolerating salinity levels exceeding that of ocean water and which at the same time are promising for utilization in agriculture or forestry. These plants could be very useful for a country like the UAE where fresh water resources are very scarce and the groundwater available at some places is already very salty. More than 60 million woody trees/shrubs have been planted so far and more are planned for the inland plains underlain with brackish groundwater. These species were no solution for the widely barren shoreline of the UAE. Here mangrove species were of potential use, and one species, Avicennia Marina, occurs widely and has been successfully planted for about a decade. Converting the tree plantations into economically useful cropping systems is still a problem requiring much research and development. The book deals in several sections with conventional irrigation systems using marginal water. The species used in these systems are mostly hybrids of conventional crops. The irrigation systems, however, have similar problems as may be expected for irrigation with seawater. Papers show the participants' experiments in this area. The volume serves as a link between scientists working for the improvement of classical irrigation systems and those interested in the application of a new dimension of salinity levels for irrigation water.




Water Quality for Agriculture


Book Description

Richtlijnen voor de werker in het veld om problemen te ondervangen ten aanzien van de waterkwaliteit voor irrigatie-doeleinden. Tenslotte worden praktijkervaringen uit diverse gebieden vermeld







Soil Salinity and Water Quality


Book Description

This volume covers such areas in the field of soil salinity and water quality as: origin and distribution of salt-affected soils; management of alkali soils; quality criteria of irrigation water; wastewaters as a source of irrigation; and grasses and trees in the management of salt-affected soils.




Biosalinity in Action: Bioproduction with Saline Water


Book Description

Historically, scientists and laymen have regarded salinity as a hazar dous, detrimental phenomenon. This negative view was a principal reason for the lack of agricultural development of most arid and semi arid zones of the world where the major sources of water for biological production are saline. The late Hugo Boyko was probably the first scientist in recent times to challenge this commonly held, pessimistic view of salinity. His research in Israel indicated that many plants can be irrigated with saline water, even at seawater strength, if they are in sandy soil - a technique that could open much barren land to agriculture. This new, even radical, approach to salinity was clearly enunciated in the book he edited and most appropriately entitled 'Salinity and Aridity: New Approaches to Old Problems' (1966). A decade later, three members of the United States National Science Foundation (NSF), Lewis Mayfield, James Aller and Oskar Zaborsky, formulated the 'Biosaline Concept'; namely, that poor soils, high solar insolation and saline water, which prevail in arid lands, should be viewed as useful resources rather than as disadvantages, and that these resources can be used for non-traditional production of food, fuels and chemicals. The First International Workshop on Biosaline Research was con vened at Kiawah Island, South Carolina, in 1977 by A. San Pietro.




Handbook of Wastewater Reclamation and Reuse


Book Description

This comprehensive reference provides thorough coverage of water and wastewater reclamation and reuse. It begins with an introductory chapter covering the fundamentals, basic principles, and concepts. Next, drinking water and treated wastewater criteria, guidelines, and standards for the United States, Europe and the World Health Organization (WHO) are presented. Chapter 3 provides the physical, chemical, biological, and bacteriological characteristics, as well as the radioactive and rheological properties, of water and wastewater. The next chapter discusses the health aspects and removal treatment processes of microbial, chemical, and radiological constituents found in reclaimed wastewater. Chapter 5 discusses the various wastewater treatment processes and sludge treatment and disposal. Risk assessment is covered in chapter 6. The next three chapters cover the economics, monitoring (sampling and analysis), and legal aspects of wastewater reclamation and reuse. This practical handbook also presents real-world case studies, as well as sources of information for research, potential sources for research funds, and information on current research projects. Each chapter includes an introduction, end-of-chapter problems, and references, making this comprehensive text/reference useful to both students and professionals.