Catalysis with Earth-abundant Elements


Book Description

Considering the limited resources of our planet, earth-abundant elements will have to be explored increasingly in the future. This book highlights the uses of the most earth-abundant elements in catalysis and will be of interest to graduates, academic researchers and practitioners in catalysis.




Manganese Catalysis in Organic Synthesis


Book Description

Manganese Catalysis in Organic Synthesis A must-read reference for anyone interested in catalyst design and sustainable organic synthesis In Manganese Catalysis in Organic Synthesis, distinguished researcher Jean-Baptiste Sortais delivers an insightful and robust overview of the use of manganese in homogenous catalysis. The editor includes papers from authoritative academics describing the organometallic precursors used to develop manganese catalysts and covers critical applications in organic synthesis, including reduction to oxidation reactions, C-C, C-N, C-X bond formation reactions, cross-coupling reactions, C-H bond activation to dihydroxylation and epoxidation reactions. Manganese Catalysis in Organic Synthesis is a practical resource for every organic chemist in academia and industry with an interest in non-noble metal catalysis, organic synthesis, and sustainable chemistry. It is intuitively and clearly organized, covering the most important synthetic procedures using homogenous manganese catalysts. It is also the ideal companion to works like Cobalt Catalysis in Organic Synthesis, Nickel Catalysis in Organic Synthesis, and Iron Complexes in Catalysis. Readers will also enjoy: Thorough introductions to organometallic manganese compounds in organic synthesis and manganese-catalyzed hydrogenation and hydrogen transfer reactions A comprehensive exploration of manganese-catalyzed hydrogen borrowing reactions and dehydrogenative coupling reactions Practical discussions of manganese-catalyzed hydrosilylation and hydroboration reactions and manganese-catalyzed electro- and photocatalysis transformations In-depth examinations of manganese-catalyzed C-H oxygenation reactions and manganese-catalyzed organometallic C-H activation Insightful treatments of manganese-catalyzed cross-coupling processes and manganese(III) acetate mediated cyclizations Perfect for catalytic, organic, and pharmaceutical chemists, Manganese Catalysis in Organic Synthesis deserves a place in the libraries of researchers and professionals interested in catalyst design and sustainable organic synthesis.




Metalloporphyrins in Catalytic Oxidations


Book Description

This volume provides an in-depth overview of the chemistry of metalloporphyrins as oxidation catalysts in chemical and biological systems. It discusses practical techniques for the synthesis of metalloporphyrins and introduces useful methods of immobilization to improve their synthetic utility. Detailed discussions of underlying mechanistic features are provided.




Innovative Catalysis in Organic Synthesis


Book Description

C-H, C-O, C-C, and C-Heteroatom bond forming processes by using metal-ligand approaches for the synthesis of organic compounds of biological, pharmacological and organic nanotechnological utility are the key areas addressed in this book. Authored by a European team of leaders in the field, it brings together innovative approaches for a variety of catalysis reactions and processes frequently applied in organic synthesis into a handy reference work. It covers all major types of catalysis, including homogeneous, heterogeneous, and organocatalysis, as well as mechanistic and computational studies. Special attention is paid to the improvements in efficiency and sustainability of important catalytic processes, such as selective oxidations, hydrogenation, and cross-coupling reactions, and to their utilization in industry. The result is a valuable resource for advanced researchers in both academia and industry, as well as graduate students in organic chemistry aiming for chemo-, regio- or stereoselective synthesis of organic compounds by using novel catalytic systems.




Perspectives in Coordination Chemistry


Book Description

In the hundred years since Alfred Werner proposed his theory of coordination compounds, coordination chemistry has grown to occupy a central position in chemical science. This book contains a selection of essays illustrating the state of the subject as it enters its second century. In addition to methods of synthesis and studies of structure and reactivity, particular attention is paid to the applications of coordination chemistry in fields as varied as biochemistry and medicine, organometallic chemistry, solid state chemistry, catalysis, and molecular receptors and devices.




Liquid Phase Aerobic Oxidation Catalysis


Book Description

The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.




Progress in Inorganic Chemistry, Volume 59


Book Description

This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 59 continues to report recent advances with a significant, up-to-date selection of contributions by internationally-recognized researchers. The chapters of this volume are devoted to the following topics: • Iron Catalysis in Synthetic Chemistry • A New Paradigm for Photodynamic Therapy Drug Design: Multifunctional, Supramolecular DNA Photomodification Agents Featuring Ru(II)/Os(II) Light Absorbers Coupled to Pt(II) or Rh(III) Bioactive Sites • Selective Binding of Zn2+ Complexes to Non-Canonical Thymine or Uracil in DNA or RNA. • Progress Toward the Electrocatalytic Production of Liquid Fuels from Carbon Dioxide • Monomeric Dinitrosyl Iron Complexes: Synthesis and Reactivity • Interactions of Nitrosoalkanes/arenes, Nitrosamines, Nitrosothiols, and Alkyl Nitrites with Metals • Aminopyridine Iron and Manganese Complexes as Molecular Catalysts for Challenging Oxidative Transformations




Computational Methods in Organometallic Catalysis


Book Description

The book includes a historical introduction to organometallic chemistry, a survey of mechanisms, and an extensive introduction to quantum mechanical computational methods.




Visible-Light-Active Photocatalysis


Book Description

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.




Metal Oxides in Heterogeneous Catalysis


Book Description

Metal Oxides in Heterogeneous Catalysis is an overview of the past, present and future of heterogeneous catalysis using metal oxides catalysts. The book presents the historical, theoretical, and practical aspects of metal oxide-based heterogeneous catalysis. Metal Oxides in Heterogeneous Catalysis deals with fundamental information on heterogeneous catalysis, including reaction mechanisms and kinetics approaches.There is also a focus on the classification of metal oxides used as catalysts, preparation methods and touches on zeolites, mesoporous materials and Metal-organic frameworks (MOFs) in catalysis. It will touch on acid or base-type reactions, selective (partial) and total oxidation reactions, and enzymatic type reactions The book also touches heavily on the biomass applications of metal oxide catalysts and environmentally related/depollution reactions such as COVs elimination, DeNOx, and DeSOx. Finally, the book also deals with future trends and prospects in metal oxide-based heterogeneous catalysis. - Presents case studies in each chapter that provide a focus on the industrial applications - Includes fundamentals, key theories and practical applications of metal oxide-based heterogeneous catalysis in one comprehensive resource - Edited, and contributed, by leading experts who provide perspectives on synthesis, characterization and applications