Best Practice Guide on the Control of Iron and Manganese in Water Supply


Book Description

This Best Practice Guide on the Control of Iron and Manganese in Water Supply is one of a series produced by the International Water Association’s Specialist Group on Metals and Related Substances in Drinking Water. Iron and manganese are often found in soft upland water sources associated with natural organic matter and are also commonly found in the groundwater abstracted from confined and unconfined aquifers. The presence of iron and manganese in water is one of the most frequent reasons for customers’ complaint due to aesthetic issues (yellow, brown and black or stains on laundry and plumbing fixtures). These two metals can be removed fairly readily by physico-chemical treatment. The municipal treatment systems deployed derive benefit from their larger scale, particularly in relation to control, but the processes used are less suitable for the numerous small supplies that are the most common water supplies throughout Europe, especially in rural areas. One important source of iron in drinking water is from old corroded cast-iron water mains, historically the material used most commonly in supply networks. Replacement and refurbishment is very expensive and the major challenge is how best to prioritize available expenditure. The purpose for this Best Practice Guide on the Control of Iron and Manganese in Water Supply is to give readers the broad view of a problem based on state-of-the-art compilation of the range of scientific, engineering, regulatory and operational issues concerned with the control of iron and manganese in drinking water. The Guide is of interest to water utility practitioners, health agencies and policy makers, as well as students on civil engineering and environmental engineering courses. Authors: Dr Adam Postawa, AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Krakow, Poland and Dr Colin R Hayes, University of Swansea, UK, Chair of IWA Specialist Group on Metals and Related Substances in Drinking Water.







Manganese Removal from Groundwater


Book Description

In The Netherlands, Belgium and other European countries, manganese is removed by conventional groundwater treatment with aeration and rapid (sand) filtration. Such a treatment process is easy to operate, cost effective and sustainable, because it does not make use of strong oxidants such as O3, Cl2, ClO2 and KMnO4 with the associated risk of by-product formation and over or under dosing. However, application of aeration-filtration is also facing drawbacks, especially the long ripening time of filter media. Due to the long ripening time, water companies have to waste large volumes of treated water, making this process less sustainable. Also, costs associated with filter media ripening (man power, electricity, operational and analysis costs) are high. Therefore decreasing the filter ripening time, regarding manganese removal is a big issue. Although already extended research has been carried out into manganese removal, the controlling mechanisms, especially of the start up face of filter media ripening, are not fully understood yet. The emphasis of this thesis is to provide a better understanding of the mechanisms involved in the ripening of virgin filter media, regarding manganese removal and how to shorten or completely eliminate the long ripening period of filters with virgin material. This thesis therefore highlights the role of the formation of a manganese oxide coating on virgin filter media. Characterization and identification revealed that the responsible manganese oxide for an effective manganese removal was Birnessite. It was found that Birnessite, formed at the beginning of the ripening process was of a biological origin. Based on the knowledge that manganese removal in conventional groundwater treatment is initiated biologically, long ripening times may be reduced by creating conditions favouring the growth of manganese oxidizing bacteria, e.g., by limiting the back wash frequency and / or intensity. Additionally, this thesis also shows that the use of freshly prepared manganese oxide, containing Birnessite, can completely eliminate filter media ripening time.




Occurrence of Manganese in Drinking Water and Manganese Control


Book Description

This research study describes the chemistry and suggested treatment of manganese in drinking water, with the goals of reducing customer complaints and improving perceived water quality. The problems are aesthetic-water discoloration (usually black or dark red), clothing and fixture staining, turbid water sediments, and, at very high levels, metallic taste.




Occurrence and Distribution of Iron, Manganese, and Selected Trace Elements in Ground Water in the Glacial Aquifer System of the Northern United States


Book Description

Dissolved trace elements, including iron and manganese, are often an important factor in use of ground water for drinking-water supplies. Concentrations of these trace elements can very over several orders of magnitude across local well networks as well as across regions of the United States.







Copper in Drinking Water


Book Description

The safety of the nation's drinking water must be maintained to ensure the health of the public. The U.S. Environmental Protection Agency (EPA) is responsible for regulating the levels of substances in the drinking water supply. Copper can leach into drinking water from the pipes in the distribution system, and the allowable levels are regulated by the EPA. The regulation of copper, however, is complicated by the fact that it is both necessary to the normal functioning of the body and toxic to the body at too high a level. The National Research Council was requested to form a committee to review the scientific validity of the EPA's maximum contaminant level goal for copper in drinking water. Copper in Drinking Water outlines the findings of the committee's review. The book provides a review of the toxicity of copper as well as a discussion of the essential nature of this metal. The risks posed by both short-term and long-term exposure to copper are characterized, and the implications for public health are discussed. This book is a valuable reference for individuals involved in the regulation of water supplies and individuals interested in issues surrounding this metal.




Water Quality Monitoring


Book Description

Water quality monitoring is an essential tool in the management of water resources and this book comprehensively covers the entire monitoring operation. This important text is the outcome of a collborative programme of activity between UNEP and WHO with inputs from WMO and UNESCO and draws on the international standards of the International Organization of Standardization.




Industrial Water Treatment Process Technology


Book Description

Industrial Water Treatment Process Technology begins with a brief overview of the challenges in water resource management, covering issues of plenty and scarcity-spatial variation, as well as water quality standards. In this book, the author includes a clear and rigorous exposition of the various water resource management approaches such as: separation and purification (end of discharge pipe), zero discharge approach (green process development), flow management approach, and preservation and control approach. This coverage is followed by deeper discussion of individual technologies and their applications. - Covers water treatment approaches including: separation and purification—end of discharge pipe; zero discharge approach; flow management approach; and preservation and control approach - Discusses water treatment process selection, trouble shooting, design, operation, and physico-chemical and treatment - Discusses industry-specific water treatment processes




Toxicological Profile for Manganese


Book Description

This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the toxic substances each profile describes. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The profiles focus on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance's relevant toxicological properties. Following the public health statement is information concerning levels of significant human exposure and, where known, significant health effects. A health effects summary describes the adequacy of information to determine a substance's health effects. ATSDR identifies data needs that are significant to protection of public health. Each profile: (A) Examines, summarizes, and interprets available toxicologic information and epidemiologic evaluations on a toxic substance to ascertain the levels of significant human exposure for the substance and the associated acute, subacute, and chronic health effects; (B) Determines whether adequate information on the health effects of each substance is available or being developed to determine levels of exposure that present a significant risk to human health of acute, subacute, and chronic health effects; and (C) Where appropriate, identifies toxicologic testing needed to identify the types or levels of exposure that may present significant risk of adverse health effects in humans.