Green's Functions and Condensed Matter


Book Description

"Green's functions, named for the mathematician who developed them in the 1830s, possess applications in many areas of physics. This volume presents the basic theoretical formulation, followed by specific applications that include transport coefficients of a metal, the Coulomb gas, Fermi liquids, electrons and phonons, superconductivity, superfluidity, and magnetism. 1984 edition"--







The Green Function Method in Statistical Mechanics


Book Description

Concise monograph devoted to techniques of solving many-body problems in physics using the quantum-mechanical Green function method. Requires some familiarity with the basic theory of quantum mechanics and statistical mechanics. 1962 edition.




Many-Body Approach to Electronic Excitations


Book Description

The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.




Interacting Electrons


Book Description

Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.




Green's Function in Condensed Matter Physics


Book Description

GREEN'S FUNCTION THEORY: Condensed Matter Physics introduces in detail the basic theories of the commonly-used monomer and multi-body Green function in condensed matter physics. It introduces the Farnman graphic technology and kinetic equation method regarding multi-body Green function, mainly in the aspect of weak coupling superconductor, Heisenberg magnetic system and mesoscopic transport. The book also explains the concepts and deduces the formulas in great details. It is very learner-friendly with its content level going gradually from being easy to being difficult.




Progress in Nonequilibrium Green's Functions


Book Description

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, J”rn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.




On the Green's Function for the Linearized Vlasov Equation (Classic Reprint)


Book Description

Excerpt from On the Green's Function for the Linearized Vlasov Equation While we have set up the equations for a one - component plasma, the system of equations (1) covers the many - component case. For let us suppose that there were many species of particles, each with its own distribution function, V, t), unperturbed distribution function foi(v), charge ei, and mass mi, such that each distribution function satisfied (la). About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.