Complex Justice


Book Description

In 1987 Judge Russell Clark mandated tax increases to help pay for improvements to the Kansas City, Missouri, School District in an effort to lure white students and quality teachers back to the inner-city district. Yet even after increasing employee salaries and constructing elaborate facilities at a cost of more than $2 billion, the district remained overwhelmingly segregated and student achievement remained far below national averages. Just eight years later the U.S. Supreme Court began reversing these initiatives, signifying a major retreat from Brown v. Board of Education. In Kansas City, African American families opposed to the district court's efforts organized a takeover of the school board and requested that the court case be closed. Joshua Dunn argues that Judge Clark's ruling was not the result of tyrannical "judicial activism" but was rather the logical outcome of previous contradictory Supreme Court doctrines. High Court decisions, Dunn explains, necessarily limit the policy choices available to lower court judges, introducing complications the Supreme Court would not anticipate. He demonstrates that the Kansas City case is a model lesson for the types of problems that develop for lower courts in any area in which the Supreme Court attempts to create significant change. Dunn's exploration of this landmark case deepens our understanding of when courts can and cannot successfully create and manage public policy.




Manifolds, Sheaves, and Cohomology


Book Description

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.




Smooth Four-Manifolds and Complex Surfaces


Book Description

In 1961 Smale established the generalized Poincare Conjecture in dimensions greater than or equal to 5 [129] and proceeded to prove the h-cobordism theorem [130]. This result inaugurated a major effort to classify all possible smooth and topological structures on manifolds of dimension at least 5. By the mid 1970's the main outlines of this theory were complete, and explicit answers (especially concerning simply connected manifolds) as well as general qualitative results had been obtained. As an example of such a qualitative result, a closed, simply connected manifold of dimension 2: 5 is determined up to finitely many diffeomorphism possibilities by its homotopy type and its Pontrjagin classes. There are similar results for self-diffeomorphisms, which, at least in the simply connected case, say that the group of self-diffeomorphisms of a closed manifold M of dimension at least 5 is commensurate with an arithmetic subgroup of the linear algebraic group of all automorphisms of its so-called rational minimal model which preserve the Pontrjagin classes [131]. Once the high dimensional theory was in good shape, attention shifted to the remaining, and seemingly exceptional, dimensions 3 and 4. The theory behind the results for manifolds of dimension at least 5 does not carryover to manifolds of these low dimensions, essentially because there is no longer enough room to maneuver. Thus new ideas are necessary to study manifolds of these "low" dimensions.




Parabolic Geometries I


Book Description

Parabolic geometries encompass a very diverse class of geometric structures, including such important examples as conformal, projective, and almost quaternionic structures, hypersurface type CR-structures and various types of generic distributions. The characteristic feature of parabolic geometries is an equivalent description by a Cartan geometry modeled on a generalized flag manifold (the quotient of a semisimple Lie group by a parabolic subgroup). Background on differential geometry, with a view towards Cartan connections, and on semisimple Lie algebras and their representations, which play a crucial role in the theory, is collected in two introductory chapters. The main part discusses the equivalence between Cartan connections and underlying structures, including a complete proof of Kostant's version of the Bott–Borel–Weil theorem, which is used as an important tool. For many examples, the complete description of the geometry and its basic invariants is worked out in detail. The constructions of correspondence spaces and twistor spaces and analogs of the Fefferman construction are presented both in general and in several examples. The last chapter studies Weyl structures, which provide classes of distinguished connections as well as an equivalent description of the Cartan connection in terms of data associated to the underlying geometry. Several applications are discussed throughout the text.




Collected Papers of John Milnor


Book Description




Algebraic Topology


Book Description

An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.




Differential Geometry


Book Description

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.




Beginner's Course In Topology


Book Description

This book is the result of reworking part of a rather lengthy course of lectures of which we delivered several versions at the Leningrad and Moscow Universities. In these lectures we presented an introduction to the fundamental topics of topology: homology theory, homotopy theory, theory of bundles, and topology of manifolds. The structure of the course was well determined by the guiding term elementary topology, whose main significance resides in the fact that it made us use a rather simple apparatus. tn this book we have retained {hose sections of the course where algebra plays a subordinate role. We plan to publish the more algebraic part of the lectures as a separate book. Reprocessing the lectures to produce the book resulted in the profits and losses inherent in such a situation: the rigour has increased to the detriment of the intuitiveness, the geometric descriptions have been replaced by formulas needing interpretations, etc. Nevertheless, it seems to us tha·t the book retains the main qualities of our lectures: their elementary, systematic, and pedagogical features. The preparation of the reader is assumed to be limi ted to the usual knowledge of set ·theory, algebra, and calculus which mathematics students should master after the first year and a half of studies. The exposition is accompanied by examples and exercises. We hope that the book can be used as a topology textbook.




Real Algebraic Geometry and Topology


Book Description

This book contains the proceedings of the Real Algebraic Geometry-Topology Conference, held at Michigan State University in December 1993. Presented here are recent results and discussions of new ideas pertaining to such topics as resolution theorems, algebraic structures, topology of nonsingular real algebraic sets, and the distribution of real algebraic sets in projective space.




Elements of Homology Theory


Book Description

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.