Marker-Assisted Selection (MAS) in Crop Plants, volume II


Book Description

Global climate change, reductions in arable land, and food security demands that plant breeding will continue to play an imperative role in feeding 9 billion people sustainably by 2050. In order to face this challenge, modern plant breeding will necessitate the adoption of new technologies and practices to boost production of cultivated plants by capturing or generating more favorable genetic diversity. In crop plants, the majority of agronomically important traits are quantitatively inherited, controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). The most common approach to pre-breeding is to use genetic mapping to identify QTLs for key phenotypic variation followed by introgressing those QTLs into the elite gene pool with marker-assisted selection (MAS), which can enhance the selection criteria of phenotypes comparing to conventional breeding with the selection of genes. As the cost of genotyping continues to decline, the use of genotyping-by-sequencing (GBS) technologies or whole genome re-sequencing, coupled with the release of the genome sequences of plant species have permitted the development of dense arrays of single nucleotide polymorphisms (SNPs) covering the entire genome, which have in turn paved the way to genome-wide association studies (GWAS). Meanwhile, fine mapping guided by genome sequences of many plant species have facilitated the exploration of functional genes; in addition, pan-genomes constructed from various available resources such as the reference sequence and its variants, raw reads and haplotype reference panels provide a new perspective on QTL locations and potential molecular targets for plant breeding. Similarly, new approaches to marker-trait association analyses such as quantitative trait locus sequencing (QTL-seq) and quantitative trait gene sequencing (QTG-seq) that are based on bulked-segregant analysis (BSA) and whole-genome resequencing will help accelerate QTL fine-mapping and identification of the causal genes. In conclusion, the tools and strategies for MAS in modern plant breeding have been expanding in recent years. By embracing a broad array of conventional and new molecular techniques, modern plant breeding has a bright future in delivering new crop cultivars to keep our food, fiber and biobased economy diverse and safe.




Molecular Marker Systems in Plant Breeding and Crop Improvement


Book Description

Successful release of new and better crop varieties increasingly requires genomics and molecular biology. This volume presents basic information on plant molecular marker techniques from marker location up to gene cloning. The text includes a description of technical approaches in genome analysis such as comparison of marker systems, positional cloning, and array techniques in 19 crop plants.




Marker-assisted Selection


Book Description

A comprehensive description and assessment of the use of marker-assisted selection for increasing the rate of genetic gain in crops, livestock, forestry and fish, including the related policy, FAO's tradition of dealing with issues of importance to agricultural and economic development in a multidisciplinary and cross-sectoral manner.




Genetic Mapping and Marker Assisted Selection


Book Description

This book details basics in genetic linkage mapping, step-by-step procedures to perform marker assisted selection (MAS), achievements made so far in different crops, and the limitations and prospects of MAS in plant breeding.




Marker-Assisted Plant Breeding: Principles and Practices


Book Description

Marker-assisted plant breeding involves the application of molecular marker techniques and statistical and bioinformatics tools to achieve plant breeding objectives in a cost-effective and time-efficient manner. This book is intended for beginners in the field who have little or no prior exposure to molecular markers and their applications, but who do have a basic knowledge of genetics and plant breeding, and some exposure to molecular biology. An attempt has been made to provide sufficient basic information in an easy-to-follow format, and also to discuss current issues and developments so as to offer comprehensive coverage of the subject matter. The book will also be useful for breeders and research workers, as it offers a broad range of up-to-the-year information, including aspects like the development of different molecular markers and their various applications. In the first chapter, the field of marker-assisted plant breeding is introduced and placed in the proper perspective in relation to plant breeding. The next three chapters describe the various molecular marker systems, while mapping populations and mapping procedures including high-throughput genotyping are discussed in the subsequent five chapters. Four chapters are devoted to various applications of markers, e.g. marker-assisted selection, genomic selection, diversity analysis, finger printing and positional cloning. In closing, the last two chapters provide information on relevant bioinformatics tools and the rapidly evolving field of phenomics.




Molecular Plant Breeding


Book Description

Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.




Molecular Marker Technology for Crop Improvement


Book Description

Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants have opened new possibilities for advancing crop improvement. This Special Issue collects 16 research studies, including the application of molecular markers in 11 crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.




The Alfalfa Genome


Book Description

This book is the first comprehensive compilation of deliberations on whole genome sequencing of the diploid and tetraploid alfalfa genomes including sequence assembly, gene annotation, and comparative genomics with the model legume genome, functional genomics, and genomics of important agronomic characters. Other chapters describe the genetic diversity and germplasm collections of alfalfa, as well as development of genetic markers and genome-wide association and genomic selection for economical important traits, genome editing, genomics, and breeding targets to address current and future needs. Altogether, the book contains about 300 pages over 16 chapters authored by globally reputed experts on the relevant field in this crop. This book is useful to the students, teachers, and scientists in the academia and relevant private companies interested in genetics, breeding, pathology, physiology, molecular genetics and breeding, biotechnology, and structural and functional genomics. The work is also useful to seed and forage industries.







Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II)


Book Description

This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.