Markov Chains and Dependability Theory


Book Description

Dependability metrics are omnipresent in every engineering field, from simple ones through to more complex measures combining performance and dependability aspects of systems. This book presents the mathematical basis of the analysis of these metrics in the most used framework, Markov models, describing both basic results and specialised techniques. The authors first present both discrete and continuous time Markov chains before focusing on dependability measures, which necessitate the study of Markov chains on a subset of states representing different user satisfaction levels for the modelled system. Topics covered include Markovian state lumping, analysis of sojourns on subset of states of Markov chains, analysis of most dependability metrics, fundamentals of performability analysis, and bounding and simulation techniques designed to evaluate dependability measures. The book is of interest to graduate students and researchers in all areas of engineering where the concepts of lifetime, repair duration, availability, reliability and risk are important.




Markov Chains and Dependability Theory


Book Description

Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.




Markov Chains and Dependability Theory


Book Description

Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.




Markov Chains


Book Description

Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state and to a subset of states. These results are applied to birth-and-death processes. He then proposes a detailed study of the uniformization technique by means of Banach algebra. This technique is used for the transient analysis of several queuing systems. Contents 1. Discrete-Time Markov Chains 2. Continuous-Time Markov Chains 3. Birth-and-Death Processes 4. Uniformization 5. Queues About the Authors Bruno Sericola is a Senior Research Scientist at Inria Rennes – Bretagne Atlantique in France. His main research activity is in performance evaluation of computer and communication systems, dependability analysis of fault-tolerant systems and stochastic models.




Reliability and Availability Engineering


Book Description

Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.




Probability and Statistics with Reliability, Queuing, and Computer Science Applications


Book Description

An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.




Reliability and Availability Engineering


Book Description

Do you need to know what technique to use to evaluate the reliability of an engineered system? This self-contained guide provides comprehensive coverage of all the analytical and modeling techniques currently in use, from classical non-state and state space approaches, to newer and more advanced methods such as binary decision diagrams, dynamic fault trees, Bayesian belief networks, stochastic Petri nets, non-homogeneous Markov chains, semi-Markov processes, and phase type expansions. Readers will quickly understand the relative pros and cons of each technique, as well as how to combine different models together to address complex, real-world modeling scenarios. Numerous examples, case studies and problems provided throughout help readers put knowledge into practice, and a solutions manual and Powerpoint slides for instructors accompany the book online. This is the ideal self-study guide for students, researchers and practitioners in engineering and computer science.




Stochastic Processes and Functional Analysis


Book Description

This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.




Reliability Engineering


Book Description

Over the last 50 years, the theory and the methods of reliability analysis have developed significantly. Therefore, it is very important to the reliability specialist to be informed of each reliability measure. This book will provide historical developments, current advancements, applications, numerous examples, and many case studies to bring the reader up-to-date with the advancements in this area. It covers reliability engineering in different branches, includes applications to reliability engineering practice, provides numerous examples to illustrate the theoretical results, and offers case studies along with real-world examples. This book is useful to engineering students, research scientist, and practitioners working in the field of reliability.




Measurement, Modeling, and Evaluation of Computing Systems and Dependability and Fault Tolerance


Book Description

This book constitutes the refereed proceedings of the 16th International GI/ITG Conference on Measurement, Modeling and Evaluation of Computing Systems and Dependability and Fault Tolerance, MMB & DFT 2012, held in Kaiserslautern, Germany, in March 2012. The 16 revised full papers presented together with 5 tool papers and 5 selected workshop papers were carefully reviewed and selected from 54 submissions. MMB & DFT 2012 covers diverse aspects of performance and dependability evaluation of systems including networks, computer architectures, distributed systems, software, fault-tolerant and secure systems.




Recent Books