Marshall Olkin Distributions - Advances in Theory and Applications


Book Description

This book presents the latest advances in the theory and practice of Marshall-Olkin distributions. These distributions have been increasingly applied in statistical practice in recent years, as they make it possible to describe interesting features of stochastic models like non-exchangeability, tail dependencies and the presence of a singular component. The book presents cutting-edge contributions in this research area, with a particular emphasis on financial and economic applications. It is recommended for researchers working in applied probability and statistics, as well as for practitioners interested in the use of stochastic models in economics. This volume collects selected contributions from the conference “Marshall-Olkin Distributions: Advances in Theory and Applications,” held in Bologna on October 2-3, 2013.




Copulas and Dependence Models with Applications


Book Description

This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on “classical” topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book’s contributions were presented at the conference “Copulas and Their Applications” held in his honor in Almería, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.




Life Distributions


Book Description

This book is devoted to the study of univariate distributions appropriate for the analyses of data known to be nonnegative. The book includes much material from reliability theory in engineering and survival analysis in medicine.




Advances in Statistics - Theory and Applications


Book Description

This edited collection brings together internationally recognized experts in a range of areas of statistical science to honor the contributions of the distinguished statistician, Barry C. Arnold. A pioneering scholar and professor of statistics at the University of California, Riverside, Dr. Arnold has made exceptional advancements in different areas of probability, statistics, and biostatistics, especially in the areas of distribution theory, order statistics, and statistical inference. As a tribute to his work, this book presents novel developments in the field, as well as practical applications and potential future directions in research and industry. It will be of interest to graduate students and researchers in probability, statistics, and biostatistics, as well as practitioners and technicians in the social sciences, economics, engineering, and medical sciences.




Special Functions for Applied Scientists


Book Description

This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.




Recent Advances in Lifetime and Reliability Models


Book Description

Introduction: Mathematicians and statisticians have made significant academic progress on the subject of distribution theory in the last two decades, and this area of study is becoming one of the main statistical tools for the analysis of lifetime (survival) data. In many ways, lifetime distributions are the common language of survival dialogue because the framework subsumes many statistical properties of interest, such as reliability, entropy and maximum likelihood. Recent Advances in Lifetime and Reliability Models provides a comprehensive account of models and methods for lifetime models. Building from primary definitions such as density and hazard rate functions, this book presents readers a broad framework on distribution theory in survival analysis. This framework covers classical methods - such as the exponentiated distribution method – as well as recent models explaining lifetime distributions, such as the beta family and compounding models. Additionally, a detailed discussion of mathematical and statistical properties of each family, such as mixture representations, asymptotes, types of moments, order statistics, quantile functions, generating functions and estimation is presented in the book. Key Features: - presents information about classical and modern lifetime methods - covers key properties of different models in detail - explores regression models for the beta generalized family of distributions - focuses information on both theoretical fundamentals and practical aspects of implementing different models - features examples relevant to business engineering and biomedical sciences Recent Advances in Lifetime and Reliability Models will equip students, researchers and working professionals with the information to make extensive use of observational data in a variety of fields to create inferential models that make sense of lifetime data.




Kendall's Advanced Theory of Statistics, Distribution Theory


Book Description

Kendall's Advanced Theory of Statistics and Kendall's Library of Statistics The development of modern statistical theory is reflected in the history of the late Sir Maurice Kenfall's volumes, The Advanced Theory of Statistics. This landmark publication began life as a two-volume work and grew steadily as a single-authored work until the 1950s. In this edition, there is new material on skewness and kurtosis, hazard rate distribution, the bootstrap, the evaluation of the multivariate normal integral and ratios of quadratic forms. It also includes over 200 new references, 40 new exercises, and 20 further examples in the main text.




Computational and Methodological Statistics and Biostatistics


Book Description

In the statistical domain, certain topics have received considerable attention during the last decade or so, necessitated by the growth and evolution of data and theoretical challenges. This growth has invariably been accompanied by computational advancement, which has presented end users as well as researchers with the necessary opportunities to handle data and implement modelling solutions for statistical purposes. Showcasing the interplay among a variety of disciplines, this book offers pioneering theoretical and applied solutions to practice-oriented problems. As a carefully curated collection of prominent international thought leaders, it fosters collaboration between statisticians and biostatisticians and provides an array of thought processes and tools to its readers. The book thereby creates an understanding and appreciation of recent developments as well as an implementation of these contributions within the broader framework of both academia and industry. Computational and Methodological Statistics and Biostatistics is composed of three main themes: • Recent developments in theory and applications of statistical distributions;• Recent developments in supervised and unsupervised modelling;• Recent developments in biostatistics; and also features programming code and accompanying algorithms to enable readers to replicate and implement methodologies. Therefore, this monograph provides a concise point of reference for a variety of current trends and topics within the statistical domain. With interdisciplinary appeal, it will be useful to researchers, graduate students, and practitioners in statistics, biostatistics, clinical methodology, geology, data science, and actuarial science, amongst others.




Advances in the Theory of Probabilistic and Fuzzy Data Scientific Methods with Applications


Book Description

This book focuses on the advanced soft computational and probabilistic methods that the authors have published over the past few years. It describes theoretical results and applications, and discusses how various uncertainty measures – probability, plausibility and belief measures – can be treated in a unified way. It also examines approximations of four notable probability distributions (Weibull, exponential, logistic and normal) using a unified probability distribution function, and presents a fuzzy arithmetic-based time series model that provides an easy-to-use forecasting technique. Lastly, it proposes flexible fuzzy numbers for Likert scale-based evaluations. Featuring methods that can be successfully applied in a variety of areas, including engineering, economics, biology and the medical sciences, the book offers useful guidelines for practitioners and researchers.




Copula Theory and Its Applications


Book Description

Copulas are mathematical objects that fully capture the dependence structure among random variables and hence offer great flexibility in building multivariate stochastic models. Since their introduction in the early 50's, copulas have gained considerable popularity in several fields of applied mathematics, such as finance, insurance and reliability theory. Today, they represent a well-recognized tool for market and credit models, aggregation of risks, portfolio selection, etc. This book is divided into two main parts: Part I - "Surveys" contains 11 chapters that provide an up-to-date account of essential aspects of copula models. Part II - "Contributions" collects the extended versions of 6 talks selected from papers presented at the workshop in Warsaw.