Mass Metrology


Book Description

This book presents the practical aspects of mass measurements. Concepts of gravitational, inertial and conventional mass and details of the variation of acceleration of gravity are described. The Metric Convention and International Prototype Kilogram and BIPM standards are described. The effect of change of gravity on the indication of electronic balances is derived with respect of latitude, altitude and earth topography. The classification of weights by OIML is discussed. Maximum permissible errors in different categories of weights prescribed by national and international organizations are presented. Starting with the necessity of redefining the unit kilogram in terms of physical constants, various methods of defining the kilogram in terms of physical constants are described. The kilogram can be defined by Avogadro’s constant, ion collection of some heavy elements, levitation, voltage and Watt Balance. The detection of very small mass of the order of zeptogram through Nanotechnolgy is also discussed. Latest recommendations of CIPM are given.







Handbook of Mass Measurement


Book Description

"How much does it weigh?" seems a simple question. To scientists and engineers, however, the answer is far from simple, and determining the answer demands consideration of an almost overwhelming number of factors. With an intriguing blend of history, fundamentals, and technical details, the Handbook of Mass Measurement sets forth the details




Comprehensive Mass Metrology


Book Description

M. Kochsiek, M. Glaser (eds.) Comprehensive Mass Metrology Mass determination is of fundamental importance for science, technology and economics. Technical measuring systems range from ultramicro balances to weighing machines for freight trains; massive objects range from subatomic particles to galaxies. Comprehensive and topical, this reference work -- edited by scientists of the Physikalisch-Technische Bundesanstalt, Germany -- covers the whole field of mass determination. Starting from physical foundations, it describes virtually all measurement techniques in detail and gives a thorough overview over scientific experiments related to the determination of masses. Reports on contemporary problems, such as a new definition of the kilogram, historical excursions and a list of references without competition make this book an absolute must for everyone dealing with questions relating to mass determination in fundamental research, technical application, calibration service, and standardization. From the contents: - Mass as a Physical Quantity - The Determination of Mass - Mass Comparators - Quantities Derived from Mass and their Determination




Metrology and Fundamental Constants


Book Description

One of the exciting characteristics of metrology is its intimate relationship between fundamental physics and the leading edge of technology which is needed to perform advanced and challenging experiments and measurements. This title includes a set of lectures which present the relevant progress in Metrology.




Recent Advances in Metrology and Fundamental Constants


Book Description

Over the last decade of the 20th century, many improvements took place in the field of metrology and fundamental constants. These developments and improvements are discussed in this book. The old caesium SI second definition has found a new realization with the fountain approach, replacing the classical thermal atomic beam. The use of cold atom techniques, slowed down and cooled, has opened a number of unexpected avenues for metrology and fundamental constants, one of these possibilities being the atom interferometry. Another development was the demonstration of the possiblility of performing a direct frequency division in the visible, using short femtosecond pulses. Many other developments are also discussed.




Handbook of Metrology


Book Description

Metrology is the study of measurement. It includes all theoretical and practical aspects of measurement and may be divided into three subfields: Scientific or fundamental metrology concerns the establishment of measurement units, unit systems, development of new measurement methods, realization of measurement standards and the transfer of traceability from these standards to users in society. This handbook contains articles dealing with general topics of measurement and articles on particular subjects in mechanics and acoustics, electricity, optics, temperature, time and frequency, chemistry, medicine and particles. The contributions of the first part are sumamrized as follows. Introduction Units Fundamental Constants Fundamentals of Materials Measurement and Testing Measurement of Mass Desnity Measurement and Instrumentation of Flow Ultrasonics Measurement of Basic Electromagnetic Quantities Quantum Electrical Standards Metrology of Time and Frequency Temperature Measurement Metrology in Medicine




New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science


Book Description

The use of standard and reliable measurements is essential in many areas of life, but nowhere is it of more crucial importance than in the world of science, and physics in particular. This book contains 20 contributions presented as part of Course 206 of the International School of Physics Enrico Fermi on New Frontiers for Metrology: From Biology and Chemistry to Quantum and Data Science, held in Varenna, Italy, from 4 -13 July 2019. The Course was the 7th in the Enrico Fermi series devoted to metrology, and followed a milestone in the history of measurement: the adoption of new definitions for the base units of the SI. During the Course, participants reviewed the decision and discussed how the new foundation for metrology is opening new possibilities for physics, with several of the lecturers reflecting on the implications for an easier exploration of the unification of quantum mechanics and gravity. A wide range of other topics were covered, from measuring color and appearance to atomic weights and radiation, and including the application of metrological principles to the management and interpretation of very large sets of scientific data and the application of metrology to biology. The book also contains a selection of posters from the best of those presented by students at the Course. Offering a fascinating exploration of the latest thinking on the subject of metrology, this book will be of interest to researchers and practitioners from many fields.




Metrology and Physical Constants


Book Description

The reliability and accuracy of systems of measurement continue to advance. We are about to enter a period of the most stable measurement system we can imagine with the anticipated new definitions of the SI units of measurement; a direct link between fundamental physics and metrology which will eliminate the current definition of the kilogram, until now based upon an artifact. This book presents selected papers from Course 185 of the Enrico Fermi International School of Physics, held in Varenna, Italy, in July 2012 and jointly organized with the Bureau International des Poids et Mesures (BIPM). The papers delivered at the school covered some of the most advanced topics in the discipline of metrology, including nano-technologies; quantum information and quantum devices; biology and medicine; food; surface quality; ionising radiation for health, environment, art and archaeology; and climate. The continuous and striking advances in basic research concerning atomic frequency standards operating both in the visible range and at microwave levels and the applications to satellite systems are also considered, in the framework of a historical review of the international organization of metrology, as are the problems inherent in uncertainty statements and definitions. This book will be of interest to all those whose work involves scientific measurement at the highest levels of accuracy.




MEMS and Nanotechnology, Volume 2


Book Description

This the second volume of six from the Annual Conference of the Society for Experimental Mechanics, 2010, brings together 40 chapters on Microelectromechanical Systems and Nanotechnology. It presents early findings from experimental and computational investigations on MEMS and Nanotechnology including contributions on Nanomechanical Standards, Magneto-mechanical MEMS Sensors, Piezoelectric MEMS for Energy Harvesting, and Linear and Nonlinear Mass Sensing.