Mastering Data Warehouse Aggregates


Book Description

This is the first book to provide in-depth coverage of star schema aggregates used in dimensional modeling-from selection and design, to loading and usage, to specific tasks and deliverables for implementation projects Covers the principles of aggregate schema design and the pros and cons of various types of commercial solutions for navigating and building aggregates Discusses how to include aggregates in data warehouse development projects that focus on incremental development, iterative builds, and early data loads




Mastering Data Warehouse Design


Book Description

A cutting-edge response to Ralph Kimball's challenge to thedata warehouse community that answers some tough questions aboutthe effectiveness of the relational approach to datawarehousing Written by one of the best-known exponents of the Bill Inmonapproach to data warehousing Addresses head-on the tough issues raised by Kimball andexplains how to choose the best modeling technique for solvingcommon data warehouse design problems Weighs the pros and cons of relational vs. dimensional modelingtechniques Focuses on tough modeling problems, including creating andmaintaining keys and modeling calendars, hierarchies, transactions,and data quality




Building the Data Warehouse


Book Description

The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.




Mastering SAS Programming for Data Warehousing


Book Description

Build a strong foundation in SAS data warehousing by understanding data transformation code and policy, data stewardship and management, interconnectivity between SAS and other warehousing products, and print and web reporting Key FeaturesUnderstand how to use SAS macros for standardizing extract, transform, and load (ETL) protocolsDevelop and use data curation files for effective warehouse managementLearn how to develop and manage ETL, policies, and print and web reports that meet user needsBook Description SAS is used for various functions in the development and maintenance of data warehouses, thanks to its reputation of being able to handle ’big data’. This book will help you learn the pros and cons of storing data in SAS. As you progress, you’ll understand how to document and design extract-transform-load (ETL) protocols for SAS processes. Later, you’ll focus on how the use of SAS arrays and macros can help standardize ETL. The book will also help you examine approaches for serving up data using SAS and explore how connecting SAS to other systems can enhance the data warehouse user’s experience. By the end of this data management book, you will have a fundamental understanding of the roles SAS can play in a warehouse environment, and be able to choose wisely when designing your data warehousing processes involving SAS. What you will learnDevelop efficient ways to manage data input/output (I/O) in SASCreate and manage extract, transform, and load (ETL) code in SASStandardize ETL through macro variables, macros, and arraysIdentify data warehouse users and ensure their needs are metDesign crosswalk and other variables to serve analyst needsMaintain data curation files to improve communication and managementUse the output delivery system (ODS) for print and web reportingConnect other products to SAS to optimize storage and reportingWho this book is for This book is for data architects, managers leading data projects, and programmers or developers using SAS who want to effectively maintain a data lake, data mart, or data warehouse.




MASTERING DATA MINING: THE ART AND SCIENCE OF CUSTOMER RELATIONSHIP MANAGEMENT


Book Description

Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers.




Data Warehouse Design Solutions


Book Description

"Each chapter is... a practice run for the way we all ought to design our data marts and hence our data warehouses."-Ralph Kimball, from the Foreword. Let the experts show you how to customize data warehouse designs for real business needs in Data Warehouse Design Solutions. To effectively design a data warehouse, you have to understand its many business uses. This guidebook shows you how business managers in different corporate functions actually use data warehouses to make decisions. You'll get a rich set of data warehouse designs that flow from realistic business cases. Two top experts show you how to customize your data warehouse designs for real-life business needs including: * Sales and marketing * Production and inventory management * Budgeting and financial reporting * Quality control * Product delivery and fulfillment * Strategic business analysis such as determining market share, rates of return on investment, and other key analytic ratios. CD-ROM includes All sample data warehouse designs with accompanying preformatted reports in HTML for specific business uses such as marketing, sales, and financial analysis.




Data Warehousing and Analytics


Book Description

This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.




Mastering Data Warehousing


Book Description

Architect, Build, and Optimize Your Data Warehouse Are you ready to revolutionize the way your organization stores and accesses data? "Mastering Data Warehousing" is your definitive guide to architecting, building, and optimizing data warehouses that facilitate efficient data storage and retrieval. Whether you're a data architect designing robust warehouse structures or a business leader aiming to glean insights from your data, this book equips you with the knowledge and strategies to master the art of data warehousing. Key Features: 1. Architecting Data Warehouses: Immerse yourself in the world of data warehousing, understanding its significance, challenges, and opportunities. Build a strong foundation that empowers you to design data warehouses that cater to your organization's needs. 2. Data Warehouse Models: Master various data warehouse models. Learn about star schema, snowflake schema, and other dimensional modeling techniques for organizing data for efficient querying and analysis. 3. Data ETL (Extract, Transform, Load): Uncover the power of ETL processes in data warehousing. Explore techniques for extracting data from diverse sources, transforming it for analysis, and loading it into your warehouse. 4. Data Quality and Governance: Delve into data quality and governance within data warehousing. Learn how to ensure data accuracy, consistency, and compliance within your warehouse. 5. Optimizing Query Performance: Master techniques for optimizing query performance. Learn about indexing, partitioning, and materialized views to enhance query speed and responsiveness. 6. Scalability and High Availability: Explore strategies for scaling and ensuring high availability of your data warehouse. Learn how to handle growing data volumes and ensure uninterrupted access to critical information. 7. Cloud Data Warehousing: Discover the world of cloud data warehousing. Learn about designing and migrating data warehouses to cloud platforms, enabling scalability and cost-efficiency. 8. Data Warehousing Tools and Platforms: Uncover a range of tools and platforms for data warehousing. Explore traditional solutions as well as modern technologies like columnar databases and data lakes. 9. Real-Time Data Warehousing: Dive into real-time data warehousing techniques. Learn how to capture and process streaming data for instant insights and decision-making. 10. Real-World Applications: Gain insights into real-world use cases of data warehousing across industries. From business intelligence to customer analytics, discover how organizations leverage data warehouses for strategic advantage. Who This Book Is For: "Mastering Data Warehousing" is an essential resource for data architects, analysts, and business professionals aiming to excel in designing and managing data warehouses. Whether you're enhancing your technical skills or transforming data into actionable insights, this book will guide you through the intricacies and empower you to harness the full potential of data warehousing. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com




Building a Scalable Data Warehouse with Data Vault 2.0


Book Description

The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0




Agile Data Warehousing for the Enterprise


Book Description

Building upon his earlier book that detailed agile data warehousing programming techniques for the Scrum master, Ralph's latest work illustrates the agile interpretations of the remaining software engineering disciplines: - Requirements management benefits from streamlined templates that not only define projects quickly, but ensure nothing essential is overlooked. - Data engineering receives two new "hyper modeling" techniques, yielding data warehouses that can be easily adapted when requirements change without having to invest in ruinously expensive data-conversion programs. - Quality assurance advances with not only a stereoscopic top-down and bottom-up planning method, but also the incorporation of the latest in automated test engines. Use this step-by-step guide to deepen your own application development skills through self-study, show your teammates the world's fastest and most reliable techniques for creating business intelligence systems, or ensure that the IT department working for you is building your next decision support system the right way. - Learn how to quickly define scope and architecture before programming starts - Includes techniques of process and data engineering that enable iterative and incremental delivery - Demonstrates how to plan and execute quality assurance plans and includes a guide to continuous integration and automated regression testing - Presents program management strategies for coordinating multiple agile data mart projects so that over time an enterprise data warehouse emerges - Use the provided 120-day road map to establish a robust, agile data warehousing program




Recent Books