Mastering Quantum Mechanics


Book Description

A complete overview of quantum mechanics, covering essential concepts and results, theoretical foundations, and applications. This undergraduate textbook offers a comprehensive overview of quantum mechanics, beginning with essential concepts and results, proceeding through the theoretical foundations that provide the field’s conceptual framework, and concluding with the tools and applications students will need for advanced studies and for research. Drawn from lectures created for MIT undergraduates and for the popular MITx online course, “Mastering Quantum Mechanics,” the text presents the material in a modern and approachable manner while still including the traditional topics necessary for a well-rounded understanding of the subject. As the book progresses, the treatment gradually increases in difficulty, matching students’ increasingly sophisticated understanding of the material. • Part 1 covers states and probability amplitudes, the Schrödinger equation, energy eigenstates of particles in potentials, the hydrogen atom, and spin one-half particles • Part 2 covers mathematical tools, the pictures of quantum mechanics and the axioms of quantum mechanics, entanglement and tensor products, angular momentum, and identical particles. • Part 3 introduces tools and techniques that help students master the theoretical concepts with a focus on approximation methods. • 236 exercises and 286 end-of-chapter problems • 248 figures




Teaching Children to Write


Book Description

In his latest book, Daniel Meier highlights the critical importance of integrating content and mechanics for successful and engaged writing at the K–4 level. Featuring the teaching philosophies and strategies of seven exemplary teachers, and a discussion of relevant research and theory, Meier provides a fresh, practical, and much-needed perspective on making writing meaningful and effective in the current standards-based era. Written by an experienced teacher and researcher, this book will be of interest to both new and veteran teachers, As well as curriculum coordinators, literacy coaches, and researchers on writing.




Mastering Mechanics I Using MATLAB 5


Book Description

For introductory mechanical engineering courses using MATLAB. This hands-on approach provides a unique and practical introduction to MATLAB by going beyond simple explanations of commands and demonstrating how to actually program. It is intended to serve two purposes. The first is to present a new toolbox for the most common statics and strength of materials problems. The second is to show, by example, how to create function files to solve generic problems. These function files expand the usability of MATLAB into new areas of study.




Mastering the Mechanics


Book Description

Easy-to-use editing lessons that focus on grammar, spelling, punctuation, and conventions in writing.




Mechanics


Book Description

This classic introductory text features hundreds of applications and design problems that illuminate fundamentals of trusses, loaded beams and cables, and related areas. Includes 334 answered problems.




No-Nonsense Classical Mechanics


Book Description

Learning classical mechanics doesn’t have to be hard What if there was a way to learn classical mechanics without all the usual fluff? What if there were a book that allowed you to see the whole picture and not just tiny parts of it? Thoughts like this are the reason that No-Nonsense Classical Mechanics now exists. What will you learn from this book? Get to know all fundamental mechanics concepts — Grasp why we can describe classical mechanics using the Lagrangian formalism, the Newtonian formalism, or the Hamiltonian formalism and how these frameworks are connected.Learn to describe classical mechanics mathematically — Understand the meaning and origin of the most important equations: Newton's second law, the Euler-Lagrange equation and Hamilton's equations.Master the most important classical mechanics systems — Read fully annotated, step-by-step calculations and understand the general algorithm we use to describe them.Get an understanding you can be proud of — Learn about beautiful and deep insights like Noether's theorem or Liouville's theorem and how classical mechanics emerges in a proper limit of special relativity, quantum mechanics and general relativity. No-Nonsense Classical Mechanics is the most student-friendly book on classical nechanics ever written. Here’s why. First of all, it's is nothing like a formal university lecture. Instead, it’s like a casual conservation with a more experienced student. This also means that nothing is assumed to be “obvious” or “easy to see”.Each chapter, each section, and each page focuses solely on the goal to help you understand. Nothing is introduced without a thorough motivation and it is always clear where each equation comes from.The book contains no fluff since unnecessary content quickly leads to confusion. Instead, it ruthlessly focuses on the fundamentals and makes sure you’ll understand them in detail. The primary focus on the readers’ needs is also visible in dozens of small features that you won’t find in any other textbook In total, the book contains more than 100 illustrations that help you understand the most important concepts visually. In each chapter, you’ll find fully annotated equations and calculations are done carefully step-by-step. This makes it much easier to understand what’s going on in.Whenever a concept is used that was already introduced previously there is a short sidenote that reminds you where it was first introduced and often recites the main points. In addition, there are summaries at the beginning of each chapter that make sure you won’t get lost.




Mastering the Mechanics


Book Description

Easy-to-use editing lessons that focus on grammar, spelling, punctuation, and conventions in writing.




Mastering Mechanics 1


Book Description

Mastering Mechanics 1 is a revision guide published by The Maths Clinic to provide a coherent and structured revision programme for A Level students. The focus of the guide is on the 'Key Points' or the fundamentals related to each topic and their application in solving problems. By following the study plan set out in the guide the student is able to achieve the following:* Master the underlying principles and formulae associated with each topic;* Learn to apply the key points to solve problems; * Validate subject knowledge with self-tests; * Tackle complex questions with ease; The guide is designed to take students beyond the basics and transform them into star performers at the examination. Besides being a revision tool, the guide complements regular school lessons and is designed to help all students, regardless of their level of proficiency in Mathematics, achieve top grades.




Mechanics of Solids and Structures, Second Edition


Book Description

A popular text in its first edition, Mechanics of Solids and Structures serves as a course text for the senior/graduate (fourth or fifth year) courses/modules in the mechanics of solid/advanced strength of materials, offered in aerospace, civil, engineering science, and mechanical engineering departments. Now, Mechanics of Solid and Structure, Second Edition presents the latest developments in computational methods that have revolutionized the field, while retaining all of the basic principles and foundational information needed for mastering advanced engineering mechanics. Key changes to the second edition include full-color illustrations throughout, web-based computational material, and the addition of a new chapter on the energy methods of structural mechanics. Using authoritative, yet accessible language, the authors explain the construction of expressions for both total potential energy and complementary potential energy associated with structures. They explore how the principles of minimal total potential energy and complementary energy provide the means to obtain governing equations of the structure, as well as a means to determine point forces and displacements with ease using Castigliano’s Theorems I and II. The material presented in this chapter also provides a deeper understanding of the finite element method, the most popular method for solving structural mechanics problems. Integrating computer techniques and programs into the body of the text, all chapters offer exercise problems for further understanding. Several appendices provide examples, answers to select problems, and opportunities for investigation into complementary topics. Listings of computer programs discussed are available on the CRC Press website.




Mastering Calculations in Linear and Nonlinear Mechanics


Book Description

This book deals with the management of calculations in linear and nonlinear mechanics. Particular attention is given to error estimators and indicators for structural analysis. The accent is on the concept of error in constitutive relation. An important part of the work is also devoted to the utilization of the error estimators involved in a calculation, beginning with the parameters related to the mesh. Many of the topics are taken from the most recent research by the authors: local error estimators, extention of the concept of error in constitutive relation to nonlinear evolution problems and dynamic problems, adaptive improvement of calculations in nonlinear mechanics. This work is intended for all those interested in mechanics: students, researchers and engineers concerned with the construction of models as well as their simulation for industrial purposes.