Modeling High Temperature Materials Behavior for Structural Analysis


Book Description

This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.




Material Modeling and Structural Mechanics


Book Description

This book presents various questions of continuum mechanical modeling in the context of experimental and numerical methods, in particular, multi-field problems that go beyond the standard models of continuum mechanics. In addition, it discusses dynamic problems and practical solutions in the field of numerical methods. It focuses on continuum mechanics, which is often overlooked in the traditional division of mechanics into statics, strength of materials and kinetics. The book is dedicated to Prof. Volker Ulbricht, who passed away on April 9, 2021.




Modeling of Material Damage and Failure of Structures


Book Description

An extensive and comprehensive survey of one- and three-dimensional damage models for elastic and inelastic solids. The book not only provides a rich current source of knowledge, but also describes examples of practical applications, numerical procedures, and computer codes. The style throughout is systematic, clear, and concise, and supported by illustrative diagrams. The state of the art is given by some 200 references.




Structural Mechanics: Modelling and Analysis of Frames and Trusses


Book Description

Textbook covers the fundamental theory of structural mechanics and the modelling and analysis of frame and truss structures Deals with modelling and analysis of trusses and frames using a systematic matrix formulated displacement method with the language and flexibility of the finite element method Element matrices are established from analytical solutions to the differential equations Provides a strong toolbox with elements and algorithms for computational modelling and numerical exploration of truss and frame structures Discusses the concept of stiffness as a qualitative tool to explain structural behaviour Includes numerous exercises, for some of which the computer software CALFEM is used. In order to support the learning process CALFEM gives the user full overview of the matrices and algorithms used in a finite element analysis




Continuum Mechanics Modeling of Material Behavior


Book Description

Continuum Mechanics Modeling of Material Behavior offers a uniquely comprehensive introduction to topics like RVE theory, fabric tensor models, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. Contemporary continuum mechanics research has been moving into areas of complex material microstructural behavior. Graduate students who are expected to do this type of research need a fundamental background beyond classical continuum theories. The book begins with several chapters that carefully and rigorously present mathematical preliminaries: kinematics of motion and deformation; force and stress measures; and general principles of mass, momentum and energy balance. The book then moves beyond other books by dedicating several chapters to constitutive equation development, exploring a wide collection of constitutive relations and developing the corresponding material model formulations. Such material behavior models include classical linear theories of elasticity, fluid mechanics, viscoelasticity and plasticity. Linear multiple field problems of thermoelasticity, poroelasticity and electoelasticity are also presented. Discussion of nonlinear theories of solids and fluids, including finite elasticity, nonlinear/non-Newtonian viscous fluids, and nonlinear viscoelastic materials are also given. Finally, several relatively new continuum theories based on incorporation of material microstructure are presented including: fabric tensor theories, micropolar elasticity, elasticity with voids, nonlocal higher gradient elasticity and damage mechanics. - Offers a thorough, concise and organized presentation of continuum mechanics formulation - Covers numerous applications in areas of contemporary continuum mechanics modeling, including micromechanical and multi-scale problems - Integration and use of MATLAB software gives students more tools to solve, evaluate and plot problems under study - Features extensive use of exercises, providing more material for student engagement and instructor presentation




The Catalogue of Computational Material Models


Book Description

This book gives a comprehensive account of the formulation and computational treatment of basic geometrically linear models in 1D. To set the stage, it assembles some preliminaries regarding necessary modelling, computational and mathematical tools. Thereafter, the remaining parts are concerned with the actual catalogue of computational material models. To this end, after starting out with elasticity as a reference, further 15 different basic variants of material models (5 x each of {visco-elasticity, plasticity, visco-plasticity}, respectively) are systematically explored. The presentation for each of these basic material models is a stand-alone account and follows in each case the same structure. On the one hand, this allows, in the true sense of a catalogue, to consult each of the basic material models separately without the need to refer to other basic material models. On the other hand, even though this somewhat repetitious concept may seem tedious, it allows to compare the formulation and resulting algorithmic setting of the various basic material models and thereby to uncover, in detail, similarities and differences. In particular, the response of each basic material model is analysed for the identical histories (Zig-Zag, Sine, Ramp) of prescribed strain and stress so as to clearly showcase and to contrast to each other the characteristics of the various modelling options.




Continuum Mechanics


Book Description

This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behaviour of continuous materials. This self-contained textbook is tailored for advanced undergraduate or first-year graduate students with numerous step-by-step derivations and worked-out examples. The author presents both the general continuum theory and the mathematics needed to apply it in practice. The derivation of constitutive models for ideal gases, fluids, solids and biological materials, and the numerical methods required to solve the resulting differential equations, are also detailed. Specifically, the text presents the theory and numerical implementation for the finite difference and the finite element methods in the Matlab® programming language. It includes thirteen detailed Matlab® programs illustrating how constitutive models are used in practice.




The Finite Element Method for Solid and Structural Mechanics


Book Description

This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling




The Mechanics of Solids and Structures - Hierarchical Modeling and the Finite Element Solution


Book Description

In the recent decades, computational procedures have been applied to an increasing extent in engineering and the physical sciences. Mostly, two separate fields have been considered, namely, the analysis of solids and structures and the analysis of fluid flows. These continuous advances in analyses are of much interest to physicists, mathematicians and in particular, engineers. Also, computational fluid and solid mechanics are no longer treated as entirely separate fields of applications, but instead, coupled fluid and solid analysis is being pursued. The objective of the Book Series is to publish monographs, textbooks, and proceedings of conferences of archival value, on any subject of computational fluid dynamics, computational solid and structural mechanics, and computational multi-physics dynamics. The publications are written by and for physicists, mathematicians and engineers and are to emphasize the modeling, analysis and solution of problems in engineering.




Non-Linear Mechanics of Materials


Book Description

In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.