Materials Ageing in Light-Water Reactors


Book Description

This book is an extensive and detailed guide to the subject of materials ageing in light-water nuclear reactors. Proper management of materials degradation is essential for the safe, reliable, and economic operation of nuclear power plants across the globe. This handbook features a stunning and thorough observational treatment of the key materials degradational phenomena in light-water reactors, capturing the results of some typical destructive examinations that have been carried out to understand and furthermore mitigate these failures. It provides a comprehensive collection of unique photographs, detailed schematics, concise analyses, as well as precise measurements and expert recommendations. It is organized in such a manner that engineers and scientists can use the observations presented to not only arrive at their own conclusions but also subsequently improve their knowledge of specific materials ageing issues. This handbook is supported by the Materials Ageing Institute (MAI) and Électricité de France (EDF) and is an extensive update to the previous edition, featuring up-to-minute information to reflect the state of the art as of 2020. Since its founding in 2008, the MAI has succeeded in expanding its membership and today represents two-thirds of the world's installed nuclear power capacity, benefiting from nearly 5,000 years of combined experience in reactor operation. The vast archive of past observational data and world-leading expert recommendations presented in this handbook leverage the unique expertise of the MAI in studying the key degradation phenomena of materials to ensure the secure and sustainable operation of carbon-free electricity production. It is a must-have on the desks of any engineers or researchers involved in ageing management for light-water reactors.




Materials Ageing and Degradation in Light Water Reactors


Book Description

Light water reactors (LWRs) are the predominant class of nuclear power reactors in operation today; however, ageing and degradation can influence both their performance and lifetime. Knowledge of these factors is therefore critical to safe, continuous operation. Materials ageing and degradation in light water reactors provides a comprehensive guide to prevalent deterioration mechanisms, and the approaches used to handle their effects.Part one introduces fundamental ageing issues and degradation mechanisms. Beginning with an overview of ageing and degradation issues in LWRs, the book goes on to discuss corrosion in pressurized water reactors and creep deformation of materials in LWRs. Part two then considers materials' ageing and degradation in specific LWR components. Applications of zirconium alloys in LWRs are discussed, along with the ageing of electric cables. Materials management strategies for LWRs are then the focus of part three. Materials management strategies for pressurized water reactors and VVER reactors are considered before the book concludes with a discussion of materials-related problems faced by LWR operators and corresponding research needs.With its distinguished editor and international team of expert contributors, Materials ageing and degradation in light water reactors is an authoritative review for anyone requiring an understanding of the performance and durability of this type of nuclear power plant, including plant operators and managers, nuclear metallurgists, governmental and regulatory safety bodies, and researchers, scientists and academics working in this area. - Introduces the fundamental ageing issues and degradation mechanisms associated with this class of nuclear power reactors - Considers materials ageing and degradation in specific light water reactor components, including properties, performance and inspection - Chapters also focus on material management strategies




Materials Ageing in Light-Water Reactors


Book Description

This book is an extensive and detailed guide to the subject of materials ageing in light-water nuclear reactors. Proper management of materials degradation is essential for the safe, reliable, and economic operation of nuclear power plants across the globe. This handbook features a stunning and thorough observational treatment of the key materials degradational phenomena in light-water reactors, capturing the results of some typical destructive examinations that have been carried out to understand and furthermore mitigate these failures. It provides a comprehensive collection of unique photographs, detailed schematics, concise analyses, as well as precise measurements and expert recommendations. It is organized in such a manner that engineers and scientists can use the observations presented to not only arrive at their own conclusions but also subsequently improve their knowledge of specific materials ageing issues. This handbook is supported by the Materials Ageing Institute (MAI) and Électricité de France (EDF) and is an extensive update to the previous edition, featuring up-to-minute information to reflect the state of the art as of 2020. Since its founding in 2008, the MAI has succeeded in expanding its membership and today represents two-thirds of the world's installed nuclear power capacity, benefiting from nearly 5,000 years of combined experience in reactor operation. The vast archive of past observational data and world-leading expert recommendations presented in this handbook leverage the unique expertise of the MAI in studying the key degradation phenomena of materials to ensure the secure and sustainable operation of carbon-free electricity production. It is a must-have on the desks of any engineers or researchers involved in ageing management for light-water reactors.




Aging and Life Extension of Major Light Water Reactor Components


Book Description

In a comprehensive and lucid manner this book presents an understanding of the aging degradation of the major pressurized and boiling water reactor structures and components. The design and fabrication of each structure or component is briefly described followed by information on the associated stressors. Interactions between the design, materials, and various stressors that cause aging degradation are reviewed. In many cases, aging degradation problems have occurred, and the plant experience to date is analysed. The discussions summarize the available aging-related information and are supported with extensive references, including references to U.S. Nuclear Regulatory Commission (USNRC) documents, Electric Power Research Institute reports, U.S. and international conference proceedings and other publications. The book will prove a useful reference for engineers engaged in the operation and life extension of the present generation of nuclear power plants and for those engaged in the design of advanced light water reactors. It will also provide engineering students with insight into the practical materials-related issues associated with the design and operation of nuclear power plants. The work will also serve as a basis for programs to address the new aging-related issues likely to arise as plants get older.




Structural Materials for Generation IV Nuclear Reactors


Book Description

Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area




Comprehensive Nuclear Materials


Book Description

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field




Handbook of Small Modular Nuclear Reactors


Book Description

Small modular reactors (SMRs) are an advanced, safe type of nuclear reactor technology that are suitable for small and medium sized applications including both power and heat generation. In particular, their use as individual units or in combination to scale-up capacity offer benefits in terms of siting, installation, operation, lifecycle and economics in comparison to the development of larger nuclear plant for centralised electricity power grids. Interest has increased in the research and development of SMRs for both developing countries as well as such additional cogeneration options as industrial/chemical process heat, desalination and district heating, and hydrogen production. This book reviews key issues in their development as well as international R&D in the field. - Gives an overview of small modular reactor technology - Reviews the design characteristics of integral pressurized water reactors and focuses on reactor core and fuel technologies, key reactor system components, instrumentation and control, human-system interfaces and safety - Considers the economics, financing, licensing, construction methods and hybrid energy systems of small modular reactors - Describes SMR development activities worldwide, and concludes with a discussion of how SMR deployment can contribute to the growth of developing countries




Handbook of Generation IV Nuclear Reactors


Book Description

Handbook of Generation IV Nuclear Reactors presents information on the current fleet of Nuclear Power Plants (NPPs) with water-cooled reactors (Generation III and III+) (96% of 430 power reactors in the world) that have relatively low thermal efficiencies (within the range of 32 36%) compared to those of modern advanced thermal power plants (combined cycle gas-fired power plants – up to 62% and supercritical pressure coal-fired power plants – up to 55%). Moreover, thermal efficiency of the current fleet of NPPs with water-cooled reactors cannot be increased significantly without completely different innovative designs, which are Generation IV reactors. Nuclear power is vital for generating electrical energy without carbon emissions. Complete with the latest research, development, and design, and written by an international team of experts, this handbook is completely dedicated to Generation IV reactors. - Presents the first comprehensive handbook dedicated entirely to generation IV nuclear reactors - Reviews the latest trends and developments - Complete with the latest research, development, and design information in generation IV nuclear reactors - Written by an international team of experts in the field




Small Modular Reactors


Book Description

There is currently significant interest in the development of small modular reactors (SMRs) for the generation of both electricity and process heat. SMRs offer potential benefits in terms of better affordability and enhanced safety, and can also be sited more flexibly than traditional nuclear plants. Small Modular Reactors: Nuclear Power Fad or Future? reviews SMR features, promises, and problems, also discussing what lies ahead for reactors of this type. The book is organized into three major parts with the first part focused on the role of energy, especially nuclear energy, for global development. It also provides a brief history of SMRs. The second major part presents basic nuclear power plant terminology and then discusses in depth the attributes of SMRs that distinguish them from traditional nuclear plants. The third and final major section discusses the current interest in SMRs from a customer's perspective and delineates several remaining hurdles that must be addressed to achieve wide-spread SMR deployment. - Provides decision-makers in governments, business, and research with the needed background on small nuclear power and an overview of the current situation - Presents a balanced discussion of the many advantages of SMRs and the challenges they face - Written by a highly respected expert in the nuclear industry




Membrane Reactors for Energy Applications and Basic Chemical Production


Book Description

Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. - Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts - Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes - Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production - Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy