Materials Design and Applications


Book Description

This volume features fundamental research and applications in the field of the design and application of engineering materials, predominantly within the context of mechanical engineering applications. This includes a wide range of materials engineering and technology, including metals, e.g., polymers, composites, and ceramics. Advanced applications would include manufacturing in the new or newer materials, testing methods, multi-scale experimental and computational aspects. This book features fundamental research and applications in the design of engineering materials, predominantly within the context of mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. It covers a wide range of materials, including metals, polymers, composites, and ceramics. Advanced applications include the manufacturing of new materials, testing methods, multi-scale experimental and computational aspects. p>




Materials Design and Applications II


Book Description

This book highlights fundamental research on the design and application of engineering materials, and predominantly mechanical engineering applications. This area includes a wide range of technologies and materials, including metals, polymers, composites, and ceramics. Advanced applications include manufacturing cutting-edge materials, testing methods, and multi-scale experimental and computational aspects. The book introduces readers to a wealth of engineering applications in transport, civil, packaging and power generation.




Engineering Design Applications II


Book Description

This book offers an update on recent developments in modern engineering design. Different engineering disciplines, such as mechanical, materials, computer and process engineering, provide the foundation for the design and development of improved structures, materials and processes. The modern design cycle is characterized by the interaction between various disciplines and a strong shift to computer-based approaches where only a few experiments are conducted for verification purposes. A major driver for this development is the increased demand for cost reduction, which is also linked to environmental demands. In the transportation industry (e.g. automotive or aerospace), the demand for higher fuel efficiency is related to reduced operational costs and less environmental damage. One way to fulfil such requirements is lighter structures and/or improved processes for energy conversion. Another emerging area is the interaction of classical engineering with the health and medical sector.




Materials Design and Applications III


Book Description

This book offers selected contributions to fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, and multi-scale experimental and computational aspects.




Composite Materials


Book Description

Responding to the need for a single reference source on the design and applications of composites, Composite Materials: Design and Applications, Second Edition provides an authoritative examination of the composite materials used in current industrial applications and delivers much needed practical guidance to those working in this rapidly d




Materials and Design


Book Description

Materials and Design: The Art and Science of Material Selection in Product Design, Second Edition, discusses the role of materials and processes in product design. The book focuses on the materials that designers need, as well as on how and why they use them. The book's 10 chapters cover topics such as function and personality, factors influencing product design, the design process, materials selection, and case studies in materials and design. Appendices for each chapter provide exercises for readers, along with detailed charts of technical attributes of different materials for reference. This book will be particularly useful to both students and working designers. Students are introduced to the role of materials in manufacturing and design, with the help of familiar language and concepts. Working designers can use the book as a reference source for materials and manufacturing. - The best guide ever published on the on the role of materials, past and present, in product development, by noted materials authority Mike Ashby and professional designer Kara Johnson--now with even better photos and drawings on the Design Process - Significant new section on the use of re-cycled materials in products, and the importance of sustainable design for manufactured goods and services - Enhanced materials profiles, with addition of new materials types like nanomaterials, advanced plastics and bio-based materials




Biomimicry for Materials, Design and Habitats


Book Description

Biomimicry for Materials, Design and Habitats: Innovations and Applications and is a survey of the recent work of recognized experts in a variety of fields who employ biomimicry and related paradigms to solve key problems of interest within design, science, technology, and society. Topics covered include innovations from biomimicry in materials, product design, architecture, and biological sciences. The book is a useful resource for educators, designers, researchers, engineers, and materials scientists, taking them from the theory behind biomimicry to real world applications. Living systems have evolved innovative solutions to challenges that humans face on a daily basis. Nonlinear multifunctional systems that have a symbiotic relationship with their environment are the domain of nature. Morphological solutions for buildings inspired by nature can be used for skins, surfaces, and structures to facilitate environmental adaptation of buildings to increase occupant comfort and reduce energy demands. Birds can teach us to produce novel structures, 3D printing can be informed by oysters and mussels, and mycelium may show us the way to fabricate new biocomposites in architecture. Therefore, it is in nature that we seek inspiration for the solutions to tomorrow's challenges. - Presents new directions in education and the various applications of biomimicry within industry, including bio-inspired entrepreneurship - Discusses the role of biomimicry in education, innovation, and product design - Covers applications in systems engineering and design, novel materials with applications in 3D printing, and bio-inspired architecture - Includes perspectives on sustainability detailing the role that bio-inspiration or biomimicry plays in sustainability




Thermoelectric Nanomaterials


Book Description

Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also indicates the applications of thermoelectrics expected for the large emerging energy market. This book has a wide appeal and application value for anyone being interested in state-of-the-art thermoelectrics and/or actual viable applications in nanotechnology.




Materials, Design and Manufacturing for Lightweight Vehicles


Book Description

Research into the manufacture of lightweight automobiles is driven by the need to reduce fuel consumption to preserve dwindling hydrocarbon resources without compromising other attributes such as safety, performance, recyclability and cost. Materials, design and manufacturing for lightweight vehicles will make it easier for engineers to not only learn about the materials being considered for lightweight automobiles, but also to compare their characteristics and properties.Part one discusses materials for lightweight automotive structures with chapters on advanced steels for lightweight automotive structures, aluminium alloys, magnesium alloys for lightweight powertrains and automotive structures, thermoplastics and thermoplastic matrix composites and thermoset matrix composites for lightweight automotive structures. Part two reviews manufacturing and design of lightweight automotive structures covering topics such as manufacturing processes for light alloys, joining for lightweight vehicles, recycling and lifecycle issues and crashworthiness design for lightweight vehicles.With its distinguished editor and renowned team of contributors, Materials, design and manufacturing for lightweight vehicles is a standard reference for practicing engineers involved in the design and material selection for motor vehicle bodies and components as well as material scientists, environmental scientists, policy makers, car companies and automotive component manufacturers. - Provides a comprehensive analysis of the materials being used for the manufacture of lightweight vehicles whilst comparing characteristics and properties - Examines crashworthiness design issues for lightweight vehicles and further emphasises the development of lightweight vehicles without compromising safety considerations and performance - Explores the manufacturing process for light alloys including metal forming processes for automotive applications




Engineering Materials 2


Book Description

Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.