Fatigue and Durability of Structural Materials


Book Description

Fatigue and Durability of Structural Materials explains how mechanical material behavior relates to the design of structural machine components. The major emphasis is on fatigue and failure behavior using engineering models that have been developed to predict, in advance of service, acceptable fatigue and other durability-related lifetimes. The book covers broad classes of materials used for high-performance structural applications such as aerospace components, automobiles, and power generation systems. Coverage focuses on metallic materials but also addresses unique capabilities of important nonmetals. The concepts are applied to behavior at room or ambient temperatures; a planned second volume will address behavior at higher-temperatures. The volume is a repository of the most significant contributions by the authors to the art and science of material and structural durability over the past half century. During their careers, including 40 years of direct collaboration, they have developed a host of durability models that are based on sound physical and engineering principles. Yet, the models and interpretation of behavior have a unique simplicity that is appreciated by the practicing engineer as well as the beginning student. In addition to their own pioneering work, the authors also present the work of numerous others who have provided useful results that have moved progress in these fields. This book will be of immense value to practicing mechanical and materials engineers and designers charged with producing structural components with adequate durability. The coverage is appropriate for a range of technical levels from undergraduate engineering students through material behavior researchers and model developers. It will be of interest to personnel in the automotive and off-highway vehicle manufacturing industry, the aeronautical industry, space propulsion and the power generation/conversion industry, the electric power industry, the machine tool industry, and any industry associated with the design and manufacturing of mechanical equipment subject to cyclic loads.




Fatigue Testing and Analysis


Book Description

Fatigue Testing and Analysis: Theory and Practice presents the latest, proven techniques for fatigue data acquisition, data analysis, and test planning and practice. More specifically, it covers the most comprehensive methods to capture the component load, to characterize the scatter of product fatigue resistance and loading, to perform the fatigue damage assessment of a product, and to develop an accelerated life test plan for reliability target demonstration. This book is most useful for test and design engineers in the ground vehicle industry. Fatigue Testing and Analysis introduces the methods to account for variability of loads and statistical fatigue properties that are useful for further probabilistic fatigue analysis. The text incorporates and demonstrates approaches that account for randomness of loading and materials, and covers the applications and demonstrations of both linear and double-linear damage rules. The reader will benefit from summaries of load transducer designs and data acquisition techniques, applications of both linear and non-linear damage rules and methods, and techniques to determine the statistical fatigue properties for the nominal stress-life and the local strain-life methods. - Covers the useful techniques for component load measurement and data acquisition, fatigue properties determination, fatigue analysis, and accelerated life test criteria development, and, most importantly, test plans for reliability demonstrations - Written from a practical point of view, based on the authors' industrial and academic experience in automotive engineering design - Extensive practical examples are used to illustrate the main concepts in all chapters




Fatigue Damage of Materials


Book Description

Engineering materials are routinely subjected to fatigue loading in a wide variety of applications in the aeronautical, automotive, nuclear plant, petroleum and transportation industries. Contemporary fatigue crack initiation and fatigue crack propagation methodologies are discussed while problems in the area of crack closure, loading spectra and multiaxial loading are addressed from both analytical and experimental aspects.




Fatigue of Structures and Materials


Book Description

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.




Experimental Techniques and Design in Composite Materials


Book Description

This volume contains the revised versions of papers presented at the 4th Seminar on Experimental Techniques and Design in Composite Materials. The papers have been divided into five sections: fatigue, test methods, design, impact and modelling.




Experimental Stress Analysis for Materials and Structures


Book Description

This book summarizes the main methods of experimental stress analysis and examines their application to various states of stress of major technical interest, highlighting aspects not always covered in the classic literature. It is explained how experimental stress analysis assists in the verification and completion of analytical and numerical models, the development of phenomenological theories, the measurement and control of system parameters under operating conditions, and identification of causes of failure or malfunction. Cases addressed include measurement of the state of stress in models, measurement of actual loads on structures, verification of stress states in circumstances of complex numerical modeling, assessment of stress-related material damage, and reliability analysis of artifacts (e.g. prostheses) that interact with biological systems. The book will serve graduate students and professionals as a valuable tool for finding solutions when analytical solutions do not exist.




Recommendations for Fatigue Design of Welded Joints and Components


Book Description

This book provides a basis for the design and analysis of welded components that are subjected to fluctuating forces, to avoid failure by fatigue. It is also a valuable resource for those on boards or commissions who are establishing fatigue design codes. For maximum benefit, readers should already have a working knowledge of the basics of fatigue and fracture mechanics. The purpose of designing a structure taking into consideration the limit state for fatigue damage is to ensure that the performance is satisfactory during the design life and that the survival probability is acceptable. The latter is achieved by the use of appropriate partial safety factors. This document has been prepared as the result of an initiative by Commissions XIII and XV of the International Institute of Welding (IIW).







Nontraditional Methods of Sensing Stress, Strain, and Damage in Materials and Structures


Book Description

These facsimiles of 16 contributions from the symposium held in May 1996 in Orlando provide information on the behavior of materials and structures. The authors describe novel ways to measure point to point deformation (or strain, when normalized), procedures for measuring crack length and the stres




Handbook of Mechanics, Materials, and Structures


Book Description

The professional's source . Handbooks in the Wiley Series in Mechanical Engineering Practice Handbook of Energy Systems Engineering Production and Utilization Edited by Leslie C. Wilbur Here is the essential information needed to select, compare, and evaluate energy components and systems. Handbook of Energy Systems is a rich sourcebook of reference data and formulas, performance criteria, codes and standards, and techniques used in the development and production of energy. It focuses on the major sources of energy technology: coal, hydroelectric and nuclear power, petroleum, gas, and solar energy Each section of the Handbook is a mini-primer furnishing modern methods of energy storage, conservation, and utilization, techniques for analyzing a wide range of components such as heat exchangers, pumps, fans and compressors, principles of thermodynamics, heat transfer and fluid dynamics, current energy resource data and much more. 1985 (0 471-86633-4) 1,300 pp.