Materials for Photovoltaics: Volume 836


Book Description

Solar-cell performance is critically dependent on the optical and electrical properties of their constituent materials. In order to obtain significant improvements in performance for future generations of photovoltaic devices, it will be necessary to either improve the properties of existing materials or engineer new materials and device structures. This book focuses on materials issues and advances for photovoltaics. Topics include: dye-sensitized solar cells; nanoparticle/hybrid solar cells; polymer-based devices; small molecule-based devices; III-V semiconductors; II-VI semiconductors and transparent conducting oxides and silicon thin films.




Thin-Film Compound Semiconductor Photovoltaics: Volume 865


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.




Materials and Processes for Nonvolatile Memories: Volume 830


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.




Materials for Hydrogen Storage 2004: Volume 837


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.




Materials for Space Applications: Volume 851


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book, first published in 2005, offers a scientific and technical discussion and analysis of modifications induced by extreme conditions of the space environment.




Advanced Energy Materials


Book Description

An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject’s vast multi-disciplinary approach The book focuses particularly on photovoltaics, efficient light sources, fuel cells, energy-saving technologies, energy storage technologies, nanostructured materials as well as innovating materials and techniques for future nanoscale electronics. Pathways to future development are also discussed. Critical, cutting-edge subjects are addressed, including: Non-imaging focusing heliostat; state-of-the-art of nanostructures Metal oxide semiconductors and their nanocomposites Superionic solids; polymer nanocomposites; solid electrolytes; advanced electronics Electronic and optical properties of lead sulfide High-electron mobility transistors and light-emitting diodes Anti-ferroelectric liquid crystals; PEEK membrane for fuel cells Advanced phosphors for energy-efficient lighting Molecular computation photovoltaics and photocatalysts Photovoltaic device technology and non-conventional energy applications Readership The book is written for a large and broad readership including researchers and university graduate students from diverse backgrounds such as chemistry, materials science, physics, and engineering working in the fields of nanotechnology, photovoltaic device technology, and non-conventional energy.







Materials for Optoelectronics


Book Description

Optoelectronics ranks one of the highest increasing rates among the different industrial branches. This activity is closely related to devices which are themselves extremely dependent on materials. Indeed, the history of optoelectronic devices has been following closely that of the materials. KLUWER Academic Publishers has thus rightly identified "Materials for Optoelectronics" as a good opportunity for a book in the series entitled "Electronic Materials; Science and Technology". Although a sound background in solid state physics is recommended, the authors have confined their contribution to a graduate student level, and tried to define any concept they use, to render the book as a whole as self-consistent as possible. In the first section the basic aspects are developed. Here, three chapters consider semiconductor materials for optoelectronics under various aspects. Prof. G. E. Stillman begins with an introduction to the field from the point of view of the optoelectronic market. Then he describes how III-V materials, especially the Multi Quantum Structures meet the requirements of optoelectronic functions, including the support of microelectronics for optoelectronic integrated circuits. In chapter 2, Prof.




Solid-State Chemistry of Inorganic Materials V: Volume 848


Book Description

Solid-state chemistry continues to span and to spawn multiple materials research areas, attracting investigators from chemistry, condensed-matter physics, materials science and engineering, ceramics, chemical engineering, and mineralogy/geology, to name a few. The common challenge is to understand and to predict structures and properties of new materials. As with earlier volumes in this series from the Materials Research Society, the presentations here represent interdisciplinary research from around the world and explore not only recent advances in the solid-state chemistry of inorganic materials, but also their impact on commercial applications. The book covers a broad range of topics, including synthesis and characterization of novel functional materials; design and fabrication of nanostructures and nanomaterials; crystal and structural chemistry; catalysis; gas separation and storage; and magnetic and optical applications. Both theoretical and computational studies of solid-state inorganic materials are featured. Joint presentations with solid-state ionics are also particularly fruitful.




Materials Issues in Art and Archaeology VII: Volume 852


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.