Introduction to Materials Science


Book Description




Elementary Materials Science


Book Description

Elementary Materials Science covers the subject of materials science with few equations; it is intended primarily for students with limited science backgrounds who are interested in materials. The book also will be useful for non-technical professionals in the materials industry.







Concepts of Materials Science


Book Description

All technologies depend on the availability of suitable materials. The progress of civilisation is often measured by the materials people have used, from the stone age to the silicon age. Engineers exploit the relationships between the structure, properties and manufacturing methods of a material to optimise their design and production for particular applications. Scientists seek to understand and predict those relationships. This short book sets out fundamental concepts that underpin the science of materials and emphasizes their relevance to mainstream chemistry, physics and biology. These include the thermodynamic stability of materials in various environments, quantum behaviour governing all matter, and active matter. Others include defects as the agents of change in crystalline materials, materials at the nanoscale, the emergence of new science at increasing length scales in materials, and man-made materials with properties determined by their structure rather than their chemistry. The book provides a unique insight into the essence of materials science at a level suitable for pre-university students and undergraduates of materials science. It will also be suitable for graduates in other subjects contemplating postgraduate study in materials science. Professional materials scientists will also find it stimulating and occasionally provocative.




An Introduction to Materials Science


Book Description

Materials science has undergone a revolutionary transformation in the past two decades. It is an interdisciplinary field that has grown out of chemistry, physics, biology, and engineering departments. In this book, González-Viñas and Mancini provide an introduction to the field, one that emphasizes a qualitative understanding of the subject, rather than an intensely mathematical one. The book covers the topics usually treated in a first course on materials science, such as crystalline solids and defects. It describes the electrical, mechanical, and thermal properties of matter; the unique properties of dielectric and magnetic materials; the phenomenon of superconductivity; polymers; and optical and amorphous materials. More modern subjects, such as fullerenes, liquid crystals, and surface phenomena are also covered, and problems are included at the end of each chapter. An Introduction to Materials Science is addressed to both undergraduate students with basic skills in chemistry and physics, and those who simply want to know more about the topics on which the book focuses.




Materials Science In Construction: An Introduction


Book Description

Materials Science in Construction explains the science behind the properties and behaviour of construction's most fundamental materials (metals, cement and concrete, polymers, timber, bricks and blocks, glass and plaster). In particular, the critical factors affecting in situ materials are examined, such as deterioration and the behaviour and durability of materials under performance. An accessible, easy-to-follow approach makes this book ideal for all diploma and undergraduate students on construction-related courses taking a module in construction materials.




Materials Science and Engineering for the 1990s


Book Description

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.




Understanding Materials Science


Book Description

This introduction for engineers examines not only the physical properties of materials, but also their history, uses, development, and some of the implications of resource depletion and materials substitutions.




Computational Materials Science


Book Description

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.




Materials Science and Engineering


Book Description

Materials Science and Engineering: An Introduction promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. The 10th edition provides new or updated coverage on a number of topics, including: the Materials Paradigm and Materials Selection Charts, 3D printing and additive manufacturing, biomaterials, recycling issues and the Hall effect.