Materials and Processes


Book Description

The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Space hardware captured by astronauts and returned to Earth from long durations in space are examined. Information detailed in the Handbook is applicable to general terrestrial applications including consumer electronics as well as high reliability systems associated with aeronautics, medical equipment and ground transportation. This Handbook is also directed to those involved in maximizing the relia bility of new materials and processes for space technology and space engineering. It will be invaluable to engineers concerned with the construction of advanced structures or mechanical and electronic sub-systems.




Aerospace Materials and Applications


Book Description

"The present volume is focused on documenting the novel processing, fabrication, characterization, and testing approaches that are unique to aerospace materials/structures/systems"--Preface.




Safety Design for Space Systems


Book Description

Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. This approach entails a common understanding and mastering of basic principles of safety design for space systems at all levels of the program organisation. Fully supported by the International Association for the Advancement of Space Safety (IAASS), written by the leading figures in the industry, with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle and the International Space Station, this book provides a comprehensive reference for aerospace engineers in industry. It addresses each of the key elements that impact on space systems safety, including: the space environment (natural and induced); human physiology in space; human rating factors; emergency capabilities; launch propellants and oxidizer systems; life support systems; battery and fuel cell safety; nuclear power generators (NPG) safety; habitat activities; fire protection; safety-critical software development; collision avoidance systems design; operations and on-orbit maintenance. The only comprehensive space systems safety reference, its must-have status within space agencies and suppliers, technical and aerospace libraries is practically guaranteed Written by the leading figures in the industry from NASA, ESA, JAXA, (et cetera), with frontline experience from projects ranging from the Apollo missions, Skylab, the Space Shuttle, small and large satellite systems, and the International Space Station Superb quality information for engineers, programme managers, suppliers and aerospace technologists; fully supported by the IAASS (International Association for the Advancement of Space Safety)










Guidelines for Space Materials Selection


Book Description

This specification gives a brief review of the various classes of materials used in spacecraft manufacture, describes their chemical nature and physical aspects and gives some consideration to their processing and assembly methods. Precautions to be taken and materials to be avoided are emphasised for each class. General effects of the space environment are also described. Some individual which are suitable for space application under certain conditions are mentioned. - This document will be revised and extended; comments for users will therefore be welcome and will be considered in the preparation of the revised versions.




Reusable Launch Vehicle


Book Description

The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.




Handbook of Space Technology


Book Description

Twenty years since the first edition was published in the German language, and just over fifty years since the launch of the Earth’s first ever artificial satellite Sputnik 1, this third edition of the Handbook of Space Technology presents in fully integrated colour a detailed insight into the fascinating world of space for the first time in the English language. Authored by over 70 leading experts from universities, research institutions and the space industry, this comprehensive handbook describes the processes and methodologies behind the development, construction, operation and utilization of space systems, presenting the profound changes that have occurred in recent years in the engineering, materials, processes and even politics associated with space technologies and utilization. The individual chapters are self-contained, enabling the reader to gain a quick and reliable overview of a selected field; an extensive reference and keyword list helps those who wish to deepen their understanding of individual topics. Featuring superb, full colour illustrations and photography throughout, this interdisciplinary reference contains practical, hands-on engineering and planning information that will be invaluable to those on a career path within space technology, or simply for those of us who’d like to know more about this fascinating industry. Main section headings include: Introduction (historical overview, space missions) Fundamentals (orbital mechanics, aerothermodynamics/ reentry, space debris) Launch Vehicles (staged technologies, propulsion systems, launch infrastructure) Space Vehicle Subsystems (structure, energy supply, thermal controls, attitude control, communication) Aspects of Human Flight (man in space, life support systems, rendezvous and docking) Mission Operations (satellite operation, control center, ground station network) Utilization of Space (Earth observation, communication navigation, space astronomy, material sciences, space medicine, robotics) Configuration and Design of a Space Vehicle (mission concept, system concept, environmental simulation, system design, Galileo satellites) Management of Space Missions (project management, quality management, cost management, space law)




Development of a Spacecraft Materials Selector Expert System


Book Description

This report contains a description of the knowledge base tool and examples of its use. A downloadable version of the Spacecraft Materials Selector (SMS) knowledge base is available through the NASA Space Environments and Effects Program. The "Spacecraft Materials Selector" knowledge base is part of an electronic expert system. The expert system consists of an inference engine that contains the "decision-making" code and the knowledge base that contains the selected body of information. The inference engine is a software package previously developed at Boeing, called the Boeing Expert System Tool (BEST) kit.Pippin, G. and Kauffman, W. (Technical Monitor)Marshall Space Flight CenterSOFTWARE DEVELOPMENT TOOLS; COMPUTER PROGRAMS; EXPERT SYSTEMS; APPLICATIONS PROGRAMS (COMPUTERS); INFORMATION SYSTEMS; SELECTORS