From Music to Mathematics


Book Description

A guided tour of the mathematical principles inherent in music. Taking a "music first" approach, Gareth E. Roberts's From Music to Mathematics will inspire students to learn important, interesting, and at times advanced mathematics. Ranging from a discussion of the geometric sequences and series found in the rhythmic structure of music to the phase-shifting techniques of composer Steve Reich, the musical concepts and examples in the book motivate a deeper study of mathematics. Comprehensive and clearly written, From Music to Mathematics is designed to appeal to readers without specialized knowledge of mathematics or music. Students are taught the relevant concepts from music theory (notation, scales, intervals, the circle of fifths, tonality, etc.), with the pertinent mathematics developed alongside the related musical topic. The mathematics advances in level of difficulty from calculating with fractions, to manipulating trigonometric formulas, to constructing group multiplication tables and proving a number is irrational. Topics discussed in the book include • Rhythm • Introductory music theory • The science of sound • Tuning and temperament • Symmetry in music • The Bartók controversy • Change ringing • Twelve-tone music • Mathematical modern music • The Hemachandra–Fibonacci numbers and the golden ratio • Magic squares • Phase shifting Featuring numerous musical excerpts, including several from jazz and popular music, each topic is presented in a clear and in-depth fashion. Sample problems are included as part of the exposition, with carefully written solutions provided to assist the reader. The book also contains more than 200 exercises designed to help develop students' analytical skills and reinforce the material in the text. From the first chapter through the last, readers eager to learn more about the connections between mathematics and music will find a comprehensive textbook designed to satisfy their natural curiosity.




Mathematics and Music


Book Description

Many people intuitively sense that there is a connection between mathematics and music. If nothing else, both involve counting. There is, of course, much more to the association. David Wright's book is an investigation of the interrelationships between mathematics and music, reviewing the needed background concepts in each subject as they are encountered. Along the way, readers will augment their understanding of both mathematics and music. The text explores the common foundations of the two subjects, which are developed side by side. Musical and mathematical notions are brought together, such as scales and modular arithmetic, intervals and logarithms, tone and trigonometry, and timbre and harmonic analysis. When possible, discussions of musical and mathematical notions are directly interwoven. Occasionally the discourse dwells for a while on one subject and not the other, but eventually the connection is established, making this an integrative treatment of the two subjects. The book is a text for a freshman level college course suitable for musically inclined or mathematically inclined students, with the intent of breaking down any apprehension that either group might have for the other subject. Exercises are given at the end of each chapter. The mathematical prerequisites are a high-school level familiarity with algebra, trigonometry, functions, and graphs. Musically, the student should have had some exposure to musical staffs, standard clefs, and key signatures, though all of these are explained in the text.




Music: A Mathematical Offering


Book Description

This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.




The Topos of Music


Book Description

With contributions by numerous experts




Cool Math for Hot Music


Book Description

This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions.




Science, Music, And Mathematics: The Deepest Connections


Book Description

Professor Michael Edgeworth McIntyre is an eminent scientist who has also had a part-time career as a musician. From a lifetime's thinking, he offers this extraordinary synthesis exposing the deepest connections between science, music, and mathematics, while avoiding equations and technical jargon. He begins with perception psychology and the dichotomization instinct and then takes us through biological evolution, human language, and acausality illusions all the way to the climate crisis and the weaponization of the social media, and beyond that into the deepest parts of theoretical physics — demonstrating our unconscious mathematical abilities.He also has an important message of hope for the future. Contrary to popular belief, biological evolution has given us not only the nastiest, but also the most compassionate and cooperative parts of human nature. This insight comes from recognizing that biological evolution is more than a simple competition between selfish genes. Rather, he suggests, in some ways it is more like turbulent fluid flow, a complex process spanning a vast range of timescales.Professor McIntyre is a Fellow of the Royal Society of London (FRS) and has worked on problems as diverse as the Sun's magnetic interior, the Antarctic ozone hole, jet streams in the atmosphere, and the psychophysics of violin sound. He has long been interested in how different branches of science can better communicate with each other and with the public, harnessing aspects of neuroscience and psychology that point toward the deep 'lucidity principles' that underlie skilful communication.




The Math Behind the Music


Book Description

Accompanying CD-ROM includes musical selections.




Harmonograph


Book Description

Ashton presents a short, illustrated introduction to the evolution of simple harmonic theory. Illustrations.




Musimathics, Volume 1


Book Description

A commonsense, self-contained introduction to the mathematics and physics of music; essential reading for musicians, music engineers, and anyone interested in the intersection of art and science. “Mathematics can be as effortless as humming a tune, if you know the tune,” writes Gareth Loy. In Musimathics, Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music—a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science. In Volume 1, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Calling himself “a composer seduced into mathematics,” Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The examples given are all practical problems in music and audio. Additional material can be found at http://www.musimathics.com.




Math and Music


Book Description

From the beat of a tribal drum to a choir of crickets--music is everywhere. Math and Music explores the music of various cultures and the sounds heard in nature while highlighting the mathematical concepts, such as proportion, patterns, Fibonacci numbers, geometric transformations, and trigonometry, found in music. The companion poster explores mysterious connections between seemingly different entities, such as music and animals! A four-page guide explains the connections students may discover.