Mathematica Lab Manual Reform Calculus


Book Description

Teaches students to use Mathematica to solve problems in calculus with student projects and weekly labs. This is Version 2.2.




Calculus


Book Description

Adaptable to courses for non-engineering majors, this textbook illustrates the meaning of a curve through graphs and tests predictions through numerical values of change, before formally defining the limit of a sequence and function, the derivative, and the integral. The second half of the book develops techniques for integrating functions, approxi




Vita Mathematica


Book Description

Enables teachers to learn the history of mathematics and then incorporate it in undergraduate teaching.




A Mathematica Approach to Calculus


Book Description

Ideally suited for use with either Strauss/Bradley/Smith or Varberg/Purcell/Rigdon, this manual may also be used in conjunction with other calculus texts. Many of the exercise sets have additional problems labeled "projects" which are somewhat more involved. These projects are designed to enhance problem-solving skills by making use of not only topics currently under discussion, but, occasionally, a wide variety of previously discussed topics as well.




Project Impact - Disseminating Innovation in Undergraduate Education


Book Description

Contains abstracts of innovative projects designed to improve undergraduate education in science, mathematics, engineering, and technology. Descriptions are organized by discipline and include projects in: astronomy, biology, chemistry, computer science, engineering, geological sciences, mathematics, physics, and social sciences, as well as a selection of interdisciplinary projects. Each abstract includes a description of the project, published and other instructional materials, additional products of the project, and information on the principal investigator and participating institutions.




Making the Connection


Book Description

The chapters in this volume convey insights from mathematics education research that have direct implications for anyone interested in improving teaching and learning in undergraduate mathematics. This synthesis of research on learning and teaching mathematics provides relevant information for any math department or individual faculty member who is working to improve introductory proof courses, the longitudinal coherence of precalculus through differential equations, students' mathematical thinking and problem-solving abilities, and students' understanding of fundamental ideas such as variable and rate of change. Other chapters include information about programs that have been successful in supporting students' continued study of mathematics. The authors provide many examples and ideas to help the reader infuse the knowledge from mathematics education research into mathematics teaching practice. University mathematicians and community college faculty spend much of their time engaged in work to improve their teaching. Frequently, they are left to their own experiences and informal conversations with colleagues to develop new approaches to support student learning and their continuation in mathematics. Over the past 30 years, research in undergraduate mathematics education has produced knowledge about the development of mathematical understandings and models for supporting students' mathematical learning. Currently, very little of this knowledge is affecting teaching practice. We hope that this volume will open a meaningful dialogue between researchers and practitioners toward the goal of realizing improvements in undergraduate mathematics curriculum and instruction.




Books in Print


Book Description




Mathematical Writing


Book Description

This book will help those wishing to teach a course in technical writing, or who wish to write themselves.




Mathematical Time Capsules


Book Description

Mathematical Time Capsules offers teachers historical modules for immediate use in the mathematics classroom. Readers will find articles and activities from mathematics history that enhance the learning of topics covered in the undergraduate or secondary mathematics curricula. Each capsule presents at least one topic or a historical thread that can be used throughout a course. The capsules were written by experienced practitioners to provide teachers with historical background and classroom activities designed for immediate use in the classroom, along with further references and resources on the chapter subject. --Publisher description.




Undergraduate Mathematics for the Life Sciences


Book Description

There is a gap between the extensive mathematics background that is beneficial to biologists and the minimal mathematics background biology students acquire in their courses. The result is an undergraduate education in biology with very little quantitative content. New mathematics courses must be devised with the needs of biology students in mind. In this volume, authors from a variety of institutions address some of the problems involved in reforming mathematics curricula for biology students. The problems are sorted into three themes: Models, Processes, and Directions. It is difficult for mathematicians to generate curriculum ideas for the training of biologists so a number of the curriculum models that have been introduced at various institutions comprise the Models section. Processes deals with taking that great course and making sure it is institutionalized in both the biology department (as a requirement) and in the mathematics department (as a course that will live on even if the creator of the course is no longer on the faculty). Directions looks to the future, with each paper laying out a case for pedagogical developments that the authors would like to see.