Mathematical Functions and Their Approximations


Book Description

Mathematical Functions and their Approximations is an updated version of the Applied Mathematics Series 55 Handbook based on the 1954 Conference on Mathematical Tables, held at Cambridge, Massachusetts. The aim of the conference is to determine the need for mathematical tables in view of the availability of high speed computing machinery. This work is composed of 14 chapters that cover the machinery for the expansion of the generalized hypergeometric function and other functions in infinite series of Jacobi and Chebyshev polynomials of the first kind. Numerical coefficients for Chebyshev expansions of the more common functions are tabulated. Other chapters contain polynomial and rational approximations for certain class of G-functions, the coefficients in the early polynomials of these rational approximations, and the Padé approximations for many of the elementary functions and the incomplete gamma functions. The remaining chapters describe the development of analytic approximations and expansions. This book will prove useful to mathematicians, advance mathematics students, and researchers.




Handbook of Mathematical Functions


Book Description

An extensive summary of mathematical functions that occur in physical and engineering problems




NIST Handbook of Mathematical Functions Hardback and CD-ROM


Book Description

The new standard reference on mathematical functions, replacing the classic but outdated handbook from Abramowitz and Stegun. Includes PDF version.




The Mathematical-Function Computation Handbook


Book Description

This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally useful, author-maintained MathCW website, containing source code for the book’s software, compiled libraries for numerous systems, pre-built C compilers, and other related materials; offers a unique approach to covering mathematical-function computation using decimal arithmetic; provides extremely versatile appendices for interfaces to numerous other languages: Ada, C#, C++, Fortran, Java, and Pascal; presupposes only basic familiarity with computer programming in a common language, as well as early level algebra; supplies a library that readily adapts for existing scripting languages, with minimal effort; supports both binary and decimal arithmetic, in up to 10 different floating-point formats; covers a significant portion (with highly accurate implementations) of the U.S National Institute of Standards and Technology’s 10-year project to codify mathematical functions. This highly practical text/reference is an invaluable tool for advanced undergraduates, recording many lessons of the intermingled history of computer hardw are and software, numerical algorithms, and mathematics. In addition, professional numerical analysts and others will find the handbook of real interest and utility because it builds on research by the mathematical software community over the last four decades.




Rational Approximation of Real Functions


Book Description

This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.










Handbook of Continued Fractions for Special Functions


Book Description

Special functions are pervasive in all fields of science and industry. The most well-known application areas are in physics, engineering, chemistry, computer science and statistics. Because of their importance, several books and websites (see for instance http: functions.wolfram.com) and a large collection of papers have been devoted to these functions. Of the standard work on the subject, the Handbook of mathematical functions with formulas, graphs and mathematical tables edited by Milton Abramowitz and Irene Stegun, the American National Institute of Standards claims to have sold over 700 000 copies! But so far no project has been devoted to the systematic study of continued fraction representations for these functions. This handbook is the result of such an endeavour. We emphasise that only 10% of the continued fractions contained in this book, can also be found in the Abramowitz and Stegun project or at the Wolfram website!




CRC Standard Mathematical Tables and Formulae, 32nd Edition


Book Description

With over 6,000 entries, CRC Standard Mathematical Tables and Formulae, 32nd Edition continues to provide essential formulas, tables, figures, and descriptions, including many diagrams, group tables, and integrals not available online. This new edition incorporates important topics that are unfamiliar to some readers, such as visual proofs and sequences, and illustrates how mathematical information is interpreted. Material is presented in a multisectional format, with each section containing a valuable collection of fundamental tabular and expository reference material. New to the 32nd Edition A new chapter on Mathematical Formulae from the Sciences that contains the most important formulae from a variety of fields, including acoustics, astrophysics, epidemiology, finance, statistical mechanics, and thermodynamics New material on contingency tables, estimators, process capability, runs test, and sample sizes New material on cellular automata, knot theory, music, quaternions, and rational trigonometry Updated and more streamlined tables Retaining the successful format of previous editions, this comprehensive handbook remains an invaluable reference for professionals and students in mathematical and scientific fields.




Mathematics for Machine Learning


Book Description

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.