Mathematical Methods for Geophysics and Space Physics


Book Description

An essential textbook on the mathematical methods used in geophysics and space physics Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors




Mathematical Methods for Geophysics and Space Physics


Book Description

Graduate students in the natural sciences—including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy—need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors




Mathematical Physics


Book Description

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.




Geophysical Inverse Theory


Book Description

In many physical sciences, the most natural description of a system is with a function of position or time. In principle, infinitely many numbers are needed to specify that function, but in practice only finitely many measurements can be made. Inverse theory concerns the mathematical techniques that enable researchers to use the available information to build a model of the unknown system or to determine its essential properties. In Geophysical Inverse Theory, Robert Parker provides a systematic development of inverse theory at the graduate and professional level that emphasizes a rigorous yet practical solution of inverse problems, with examples from experimental observations in geomagnetism, seismology, gravity, electromagnetic sounding, and interpolation. Although illustrated with examples from geophysics, this book has broad implications for researchers in applied disciplines from materials science and engineering to astrophysics, oceanography, and meteorology. Parker's approach is to avoid artificial statistical constructs and to emphasize instead the reasonable assumptions researchers must make to reduce the ambiguity that inevitably arises in complex problems. The structure of the book follows a natural division in the subject into linear theory, in which the measured quantities are linear functionals of the unknown models, and nonlinear theory, which covers all other systems but is not nearly so well understood. The book covers model selection as well as techniques for drawing firm conclusions about the earth independent of any particular model.




Physics of the Earth’s Space Environment


Book Description

Presents the experimental results while explaining the underlying physics on the basis of simple reasoning and agumentation. Assumes only basic knowledge of of fundamental physics and mathematics as usually required for introductory college courses in science or engineering curricula. Derives more specifics of selected topics as each phenomenon considered ,epmasizing an intuitive over a rigorous mathematical approach. Directed at a broad group of readers and students.




Hubbert's Peak


Book Description

In 2001, Kenneth Deffeyes made a grim prediction: world oil production would reach a peak within the next decade--and there was nothing anyone could do to stop it. Deffeyes's claim echoed the work of geophysicist M. King Hubbert, who in 1956 predicted that U.S. oil production would reach its highest level in the early 1970s. Though roundly criticized by oil experts and economists, Hubbert's prediction came true in 1970. In this updated edition of Hubbert's Peak, Deffeyes explains the crisis that few now deny we are headed toward. Using geology and economics, he shows how everything from the rising price of groceries to the subprime mortgage crisis has been exacerbated by the shrinking supply--and growing price--of oil. Although there is no easy solution to these problems, Deffeyes argues that the first step is understanding the trouble that we are in.




Theoretical Global Seismology


Book Description

After every major earthquake, the Earth rings like a bell for several days. These free oscillations of the Earth and the related propagating body and surface waves are routinely detected at broad-band seismographic stations around the world. In this book, F. A. Dahlen and Jeroen Tromp present an advanced theoretical treatment of global seismology, describing the normal-mode, body-wave, and surface-wave methods employed in the determination of the Earth's three-dimensional internal structure and the source mechanisms of earthquakes. The authors provide a survey of both the history of global seismological research and the major theoretical and observational advances made in the past decade. The book is divided into three parts. In the first, "Foundations," Dahlen and Tromp give an extensive introduction to continuum mechanics and discuss the representation of seismic sources and the free oscillations of a completely general Earth model. The resulting theory should provide the basis for future scientific discussions of the elastic-gravitational deformation of the Earth. The second part, "The Spherical Earth," is devoted to the free oscillations of a spherically symmetric Earth. In the third part, "The Aspherical Earth," the authors discuss methods of dealing with the Earth's three-dimensional heterogeneity. The book is concerned primarily with the forward problem of global seismology--detailing how synthetic seismograms and spectra may be calculated and interpreted. As a long-needed unification of theories in global seismology, the book will be important to graduate students and to professional seismologists, geodynamicists, and geomagnetists, as well as to astronomers who study the free oscillations of the Sun and other stars.




Mathematical Methods for Physicists


Book Description

Table of Contents Mathematical Preliminaries Determinants and Matrices Vector Analysis Tensors and Differential Forms Vector Spaces Eigenvalue Problems Ordinary Differential Equations Partial Differential Equations Green's Functions Complex Variable Theory Further Topics in Analysis Gamma Function Bessel Functions Legendre Functions Angular Momentum Group Theory More Special Functions Fourier Series Integral Transforms Periodic Systems Integral Equations Mathieu Functions Calculus of Variations Probability and Statistics.




Mathematical Modeling of Earth's Dynamical Systems


Book Description

A concise guide to representing complex Earth systems using simple dynamic models Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html




Introduction to the Physics of Rocks


Book Description

Finding viable solutions to many of the problems threatening our environment hinges on understanding the rocks below the earth's surface. For those evaluating the relative hazards of radioactive waste sites, investigating energy resources such as oil, gas, and hydrothermal energy, studying the behavior of natural hazards like earthquakes and volcanoes, or charting the flow of groundwater through the earth, this book will be indispensable. Until now, there has been no book that treats the subject of the nature and behavior of rocks in a comprehensive yet accessible manner. Yves Gu guen and Victor Palciauskas first discuss the physical properties of rocks, proceeding by chapter through mechanical, fluid flow, acoustical, electrical, dielectric, thermal, and magnetic properties. Then they provide the theoretical framework for achieving reliable data and making reasonable inferences about the aggregate system within the earth. Introduction to the Physics of Rocks covers the important and most current theoretical approaches to the physics of inhomogeneous media, including theoretical bounds on properties, various effective medium theories, percolation, and fractals. This book will be of use to students and researchers in civil, petroleum, and environmental engineering and to geologists, geophysicists, hydrologists, and other earth scientists interested in the physics of the earth. Its clear presentation, with problems at the end of each chapter and selective references, will make it ideal for advanced undergraduate-or graduate-level courses.