Mathematical Modeling in the Age of the Pandemic


Book Description

One cannot watch or read about the news these days without hearing about the models for COVID-19 or the testing that must occur to approve vaccines or treatments for the disease. The purpose of Mathematical Modeling in the Age of a Pandemic is to shed some light on the meaning and interpretations of many of the types of models that are or might be used in the presentation of analysis. Understanding the concepts presented is essential in the entire modeling process of a pandemic. From the virus itself and its infectious rates and deaths rates to explain the process for testing a vaccine or eventually a cure, the author builds, presents, and shows model testing. This book is an attempt, based on available data, to add some validity to the models developed and used, showing how close to reality the models are to predicting "results" from previous pandemics such as the Spanish flu in 1918 and more recently the Hong Kong flu. Then the author applies those same models to Italy, New York City, and the United States as a whole. Modeling is a process. It is essential to understand that there are many assumptions that go into the modeling of each type of model. The assumptions influence the interpretation of the results. Regardless of the modeling approach the results generally indicate approximately the same results. This book reveals how these interesting results are obtained.




Mathematical Epidemiology


Book Description

Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).




Modeling Infectious Diseases in Humans and Animals


Book Description

For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control




Applied Mathematical Ecology


Book Description

The Second Autumn Course on Mathematical Ecology was held at the Intern ational Centre for Theoretical Physics in Trieste, Italy in November and December of 1986. During the four year period that had elapsed since the First Autumn Course on Mathematical Ecology, sufficient progress had been made in applied mathemat ical ecology to merit tilting the balance maintained between theoretical aspects and applications in the 1982 Course toward applications. The course format, while similar to that of the first Autumn Course on Mathematical Ecology, consequently focused upon applications of mathematical ecology. Current areas of application are almost as diverse as the spectrum covered by ecology. The topiys of this book reflect this diversity and were chosen because of perceived interest and utility to developing countries. Topical lectures began with foundational material mostly derived from Math ematical Ecology: An Introduction (a compilation of the lectures of the 1982 course published by Springer-Verlag in this series, Volume 17) and, when possible, progressed to the frontiers of research. In addition to the course lectures, workshops were arranged for small groups to supplement and enhance the learning experience. Other perspectives were provided through presentations by course participants and speakers at the associated Research Conference. Many of the research papers are in a companion volume, Mathematical Ecology: Proceedings Trieste 1986, published by World Scientific Press in 1988. This book is structured primarily by application area. Part II provides an introduction to mathematical and statistical applications in resource management.




The Rules of Contagion


Book Description

An Observer Book of the Year A Times Science Book of the Year A New Statesman Book of the Year A Financial Times Science Book of the Year 'Astonishingly bold' Daily Mail 'It is hard to imagine a more timely book ... much of the modern world will make more sense having read it.' The Times We live in a world that's more interconnected than ever before. Our lives are shaped by outbreaks - of disease, of misinformation, even of violence - that appear, spread and fade away with bewildering speed. To understand them, we need to learn the hidden laws that govern them. From 'superspreaders' who might spark a pandemic or bring down a financial system to the social dynamics that make loneliness catch on, The Rules of Contagion offers compelling insights into human behaviour and explains how we can get better at predicting what happens next. Along the way, Adam Kucharski explores how innovations spread through friendship networks, what links computer viruses with folk stories - and why the most useful predictions aren't necessarily the ones that come true. Now revised and updated with content on Covid-19.




The Stability of Dynamical Systems


Book Description

An introduction to aspects of the theory of dynamial systems based on extensions of Liapunov's direct method. The main ideas and structure for the theory are presented for difference equations and for the analogous theory for ordinary differential equations and retarded functional differential equations. The latest results on invariance properties for non-autonomous time-varying systems processes are presented for difference and differential equations.




An Introduction to Infectious Disease Modelling


Book Description

Mathematical models are increasingly used to guide public health policy decisions and explore questions in infectious disease control. Written for readers without advanced mathematical skills, this book provides an introduction to this area.




Mathematics of Public Health


Book Description

Curated by the Fields Institute for Research in Mathematical Sciences from their COVID-19 Math Modelling Seminars, this first in a series of volumes on the mathematics of public health allows readers to access the dominant ideas and techniques being used in this area, while indicating problems for further research. This work brings together experts in mathematical modelling from across Canada and the world, presenting the latest modelling methods as they relate to the COVID-19 pandemic. A primary aim of this book is to make the content accessible so that researchers share the core methods that may be applied elsewhere. The mathematical theories and technologies in this book can be used to support decision makers on critical issues such as projecting outbreak trajectories, evaluating public health interventions for infection prevention and control, developing optimal strategies to return to a new normal, and designing vaccine candidates and informing mass immunization program. Topical coverage includes: basic susceptible-exposed-infectious-recovered (SEIR) modelling framework modified and applied to COVID-19 disease transmission dynamics; nearcasting and forecasting for needs of critical medical resources including personal protective equipment (PPE); predicting COVID-19 mortality; evaluating effectiveness of convalescent plasma treatment and the logistic implementation challenges; estimating impact of delays in contact tracing; quantifying heterogeneity in contact mixing and its evaluation with social distancing; modelling point of care diagnostics of COVID-19; and understanding non-reporting and underestimation. Further, readers will have the opportunity to learn about current modelling methodologies and technologies for emerging infectious disease outbreaks, pandemic mitigation rapid response, and the mathematics behind them. The volume will help the general audience and experts to better understand the important role that mathematics has been playing during this on-going crisis in supporting critical decision-making by governments and public health agencies.




Bioterrorism


Book Description

Bioterrorism: Mathematical Modeling Applications in Homeland Security collects the detailed contributions of selected groups of experts from the fields of biostatistics, control theory, epidemiology, and mathematical biology who have engaged in the development of frameworks, models, and mathematical methods needed to address some of the pressing challenges posed by acts of terror. The ten chapters of this volume touch on a large range of issues in the subfields of biosurveillance, agroterrorism, bioterror response logistics, deliberate release of biological agents, impact assessment, and the spread of fanatic behaviors.




Optimal Control Applied to Biological Models


Book Description

From economics and business to the biological sciences to physics and engineering, professionals successfully use the powerful mathematical tool of optimal control to make management and strategy decisions. Optimal Control Applied to Biological Models thoroughly develops the mathematical aspects of optimal control theory and provides insight into t