Mathematical Modeling of Diverse Phenomena


Book Description

Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.




Mathematical Modeling of Random and Deterministic Phenomena


Book Description

This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.







Mathematical Modeling of Diverse Phenomena


Book Description

This book is intended for those students, engineers, scientists, and applied mathematicians who find it necessary to formulate models of diverse phenomena. To facilitate the formulation of such models, some aspects of the tensor calculus will be introduced. However, no knowledge of tensors is assumed. The chief aim of this calculus is the investigation of relations that remain valid in going from one coordinate system to another. The invariance of tensor quantities with respect to coordinate transformations can be used to advantage in formulating mathematical models. As a consequence of the geometrical simplification inherent in the tensor method, the formulation of problems in curvilinear coordinate systems can be reduced to series of routine operations involving only summation and differentiation. When conventional methods are used, the form which the equations of mathematical physics assumes depends on the coordinate system used to describe the problem being studied. This dependence, which is due to the practice of expressing vectors in terms of their physical components, can be removed by the simple expedient of expressing all vectors in terms of their tensor components.




The Nature of Mathematical Modeling


Book Description

This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.




An Introduction to Mathematical Modeling


Book Description

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.




A Course in Mathematical Modeling


Book Description

The emphasis of this book lies in the teaching of mathematical modeling rather than simply presenting models. To this end the book starts with the simple discrete exponential growth model as a building block, and successively refines it. This involves adding variable growth rates, multiple variables, fitting growth rates to data, including random elements, testing exactness of fit, using computer simulations and moving to a continuous setting. No advanced knowledge is assumed of the reader, making this book suitable for elementary modeling courses. The book can also be used to supplement courses in linear algebra, differential equations, probability theory and statistics.




Mathematical Modeling


Book Description




Modeling and Simulation of Energy Systems


Book Description

Energy Systems Engineering is one of the most exciting and fastest growing fields in engineering. Modeling and simulation plays a key role in Energy Systems Engineering because it is the primary basis on which energy system design, control, optimization, and analysis are based. This book contains a specially curated collection of recent research articles on the modeling and simulation of energy systems written by top experts around the world from universities and research labs, such as Massachusetts Institute of Technology, Yale University, Norwegian University of Science and Technology, National Energy Technology Laboratory of the US Department of Energy, University of Technology Sydney, McMaster University, Queens University, Purdue University, the University of Connecticut, Technical University of Denmark, the University of Toronto, Technische Universität Berlin, Texas A&M, the University of Pennsylvania, and many more. The key research themes covered include energy systems design, control systems, flexible operations, operational strategies, and systems analysis. The addressed areas of application include electric power generation, refrigeration cycles, natural gas liquefaction, shale gas treatment, concentrated solar power, waste-to-energy systems, micro-gas turbines, carbon dioxide capture systems, energy storage, petroleum refinery unit operations, Brayton cycles, to name but a few.




The Application of Mathematics to the Sciences of Nature


Book Description

The historical and epistemological reflection on the applications of mathematical techniques to the Sciences of Nature - physics, biology, chemistry, and geology - today generates attention and interest because of the increasing use of mathematical models in all sciences and their high level of sophistication. The goal of the meeting and the papers collected in this proceedings volume is to give physicists, biologists, mathematicians, and historians of science the opportunity to share information on their work and reflect on the and mathematical models are used in the natural sciences today and in way mathematics the past. The program of the workshop combines the experience of those working on current scientific research in many different fields with the historical analysis of previous results. We hope that some novel interdisciplinary, philosophical, and epistemological considerations will follow from the two aspects of the workshop, the historical and the scientific· This proceedings includes papers presented at the meeting and some of the results of the discussions that took place during the workshop. We wish to express our gratitude to Sergio Monteiro for all his work, which has been essential for the successful publication of these proceedings. We also want to thank the editors of Kluwer AcademidPlenum Publishers for their patience and constant help, and in particular Beth Kuhne and Roberta Klarreich. Our thanks to the fallowing institutions: -Amministrazione Comunale di Arcidosso -Comunita Montana del Monte Amiata ·Center for the History of Physics, UCLA -Centre F.