Mathematical Models for Systems Reliability


Book Description

Evolved from the lectures of a recognized pioneer in developing the theory of reliability, Mathematical Models for Systems Reliability provides a rigorous treatment of the required probability background for understanding reliability theory. This classroom-tested text begins by discussing the Poisson process and its associated probability







Introduction to System Reliability Theory


Book Description

This textbook provides the tools for a modern post-graduate introductory course on system reliability theory. It focuses on probabilistic aspects of the theory, including recent results based on signatures, stochastic orders, aging classes, copulas and distortion (or aggregation) functions. The reader requires on an introductory knowledge on probability theory and mathematics. The book serves both for graduate students in mathematics and for engineering students in various disciplines as well as students learning survival analysis, network reliability or simple game theory. Included also are brief introductions to the basic aspects of lifetime modelling, stochastic comparisons, aging classes, mixtures and copula theory. The book develops this knowledge with worked examples and supplies code for the program R so that students can explore its lessons and techniques.




Mathematical and Statistical Models and Methods in Reliability


Book Description

The book is a selection of invited chapters, all of which deal with various aspects of mathematical and statistical models and methods in reliability. Written by renowned experts in the field of reliability, the contributions cover a wide range of applications, reflecting recent developments in areas such as survival analysis, aging, lifetime data analysis, artificial intelligence, medicine, carcinogenesis studies, nuclear power, financial modeling, aircraft engineering, quality control, and transportation. Mathematical and Statistical Models and Methods in Reliability is an excellent reference text for researchers and practitioners in applied probability and statistics, industrial statistics, engineering, medicine, finance, transportation, the oil and gas industry, and artificial intelligence.




Mathematical Models for Structural Reliability Analysis


Book Description

Mathematical Models for Structural Reliability Analysis offers mathematical models for describing load and material properties in solving structural engineering problems. Examples are provided, demonstrating how the models are implemented, and the limitations of the models are clearly stated. Analytical solutions are also discussed, and methods are clearly distinguished from models. The authors explain both theoretical models and practical applications in a clear, concise, and readable fashion.







The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling


Book Description

The Handbook of Reliability, Maintenance, and System Safety through Mathematical Modeling discusses the many factors affect reliability and performance, including engineering design, materials, manufacturing, operations, maintenance, and many more. Reliability is one of the fundamental criteria in engineering systems design, with maintenance serving as a way to support reliability throughout a system's life. Addressing these issues requires information, modeling, analysis and testing. Different techniques are proposed and implemented to help readers analyze various behavior measures (in terms of the functioning and performance) of systems. Enables mathematicians to convert any process or system into a model that can be analyzed through a specific technique Examines reliability and mathematical modeling in a variety of disciplines, unlike competitors which typically examine only one Includes a table of contents with simple to complex examples, starting with basic models and then refining modeling approaches step-by-step




Mathematical Theory of Reliability


Book Description

This monograph presents a survey of mathematical models useful in solving reliability problems. It includes a detailed discussion of life distributions corresponding to wearout and their use in determining maintenance policies, and covers important topics such as the theory of increasing (decreasing) failure rate distributions, optimum maintenance policies, and the theory of coherent systems. The emphasis throughout the book is on making minimal assumptions - and only those based on plausible physical considerations - so that the resulting mathematical deductions may be safely made about a large variety of commonly occurring reliability situations. The first part of the book is concerned with component reliability, while the second part covers system reliability, including problems that are as important today as they were in the 1960s. The enduring relevance of the subject of reliability and the continuing demand for a graduate-level book on this topic are the driving forces behind its re-publication.




Mathematical Modelling of System Resilience


Book Description

Each of the chapters contributes state of the art research for the relevant resilience related topic covered in the chapter.




System Reliability Theory


Book Description

A comprehensive introduction to reliability analysis. The first section provides a thorough but elementary prologue to reliability theory. The latter half comprises more advanced analytical tools including Markov processes, renewal theory, life data analysis, accelerated life testing and Bayesian reliability analysis. Features numerous worked examples. Each chapter concludes with a selection of problems plus additional material on applications.