Mathematical Models for Therapeutic Approaches to Control Psoriasis


Book Description

This book discusses several mathematical models highlighting the disease dynamics of psoriasis and its control. It explains the control of keratinocyte concentration through a negative feedback mechanism and the effect of including a realistic time delay in that system. The effect of cytokine release is described in a mathematical model of psoriasis and further elucidated in two different mathematical pathways: the ordinary differential equation model system, and the fractional-order differential equation model system. The book also identifies the role of CD8+ T-cells in psoriasis by investigating the interaction between dendritic cells and CD8+ T-cells. Presenting an approach to control the fractional-order system to prevent excess production of keratinocyte cell population, the book is intended for researchers and scientists in the field of applied mathematics, health informatics, applied statistics and qualitative public health, as well as bio-mathematicians interested in the mathematical modeling of autoimmune diseases like psoriasis.




Mathematical Analysis and Applications in Modeling


Book Description

This book collects select papers presented at the “International Conference on Mathematical Analysis and Application in Modeling,” held at Jadavpur University, Kolkata, India, on 9–12 January 2018. It discusses new results in cutting-edge areas of several branches of mathematics and applications, including analysis, topology, dynamical systems (nonlinear, topological), mathematical modeling, optimization and mathematical biology. The conference has emerged as a powerful forum, bringing together leading academics, industry experts and researchers, and offering them a venue to discuss, interact and collaborate in order to stimulate the advancement of mathematics and its industrial applications.




Mathematical Models for Therapeutic Approaches to Control HIV Disease Transmission


Book Description

The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are presented in the book would serve to reveal the consequences of the logical structure of the disease transmission, quantitatively as well as qualitatively. One of the chapters introduces the optimal control approach towards the mathematical models, describing the optimal drug dosage process that is discussed with the basic deterministic models dealing with stability analysis. Another one chapter deals with the mathematical analysis for the perfect drug adherence for different drug dynamics during the treatment management. The last chapter of the book consists the stochastic approach to the disease dynamics on HIV/AIDS. This method helps to move the disease HIV/AIDS to extinction as the time to increase. This book will appeal to undergraduate and postgraduate students, as well as researchers, who are studying and working in the field of bio-mathematical modelling on infectious diseases, applied mathematics, health informatics, applied statistics and qualitative public health, etc. Social workers, who are working in the field of HIV, will also find the book useful for complements.




Optimization in Control Applications


Book Description

This book is a printed edition of the Special Issue "Optimization in Control Applications" that was published in MCA




Mathematical Modelling, Optimization, Analytic and Numerical Solutions


Book Description

This book discusses a variety of topics related to industrial and applied mathematics, focusing on wavelet theory, sampling theorems, inverse problems and their applications, partial differential equations as a model of real-world problems, computational linguistics, mathematical models and methods for meteorology, earth systems, environmental and medical science, and the oil industry. It features papers presented at the International Conference in Conjunction with 14th Biennial Conference of ISIAM, held at Guru Nanak Dev University, Amritsar, India, on 2–4 February 2018. The conference has emerged as an influential forum, bringing together prominent academic scientists, experts from industry, and researchers. The topics discussed include Schrodinger operators, quantum kinetic equations and their application, extensions of fractional integral transforms, electrical impedance tomography, diffuse optical tomography, Galerkin method by using wavelets, a Cauchy problem associated with Korteweg–de Vries equation, and entropy solution for scalar conservation laws. This book motivates and inspires young researchers in the fields of industrial and applied mathematics.




Control and Measurement Applications for Smart Grid


Book Description

The book contains select proceedings of the International Conference on Smart Grid Energy Systems and Control (SGESC 2021). The proceedings is divided into 03 volumes, and this volume focuses on adaptive control and intelligent sensors, wide-area measurements, and applications in the smart grid. This book includes papers on topics such as SMART sensors, vision sensors, sensor fusion, wireless sensors, and the internet of things, MEMS, Mechatronics, Remote sensing, telemetry, and its applications in automated vehicle control. This book is a unique collection of chapters from different areas with a common theme and will be immensely useful to academic researchers and practitioners in the industry.




Control Theory in Biomedical Engineering


Book Description

Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics highlights the importance of control theory and feedback control in our lives and explains how this theory is central to future medical developments. Control theory is fundamental for understanding feedback paths in physiological systems (endocrine system, immune system, neurological system) and a concept for building artificial organs. The book is suitable for graduate students and researchers in the control engineering and biomedical engineering fields, and medical students and practitioners seeking to enhance their understanding of physiological processes, medical robotics (legs, hands, knees), and controlling artificial devices (pacemakers, insulin injection devices).Control theory profoundly impacts the everyday lives of a large part of the human population including the disabled and the elderly who use assistive and rehabilitation robots for improving the quality of their lives and increasing their independence. - Gives an overview of state-of-the-art control theory in physiology, emphasizing the importance of this theory in the medical field through concrete examples, e.g., endocrine, immune, and neurological systems - Takes a comprehensive look at advances in medical robotics and rehabilitation devices and presents case studies focusing on their feedback control - Presents the significance of control theory in the pervasiveness of medical robots in surgery, exploration, diagnosis, therapy, and rehabilitation




Targeted Treatment of the Rheumatic Diseases


Book Description

Michael H. Weisman, Michael Weinblatt, James S Louie, and Ronald Van Vollenhoven offer their unique insights into choosing the correct pharmacological and non-pharmacological therapies for your patients. Chapters cover the full breadth of rheumatic diseases, rheumatoid arthritis, lupus, connective tissue diseases, osteoporosis, regional pain disorders, and fibromyalgia. The full-color design presents detailed clinical photographs and treatment algorithms for visual guidance and easy reference. Covers the treatment of pediatric patients as well as adults so that you can properly address the particular needs of any patient you see. Features the guidance and specific recommendations of experts from United States and Europe for a state-of-the-art approach to the variety of treatments currently in use. Displays the clinical manifestations of rheumatic diseases in full color, along with treatment algorithms for easy at-a-glance reference.




Handbook of AI-Based Models in Healthcare and Medicine


Book Description

This handbook provides thorough, in-depth, and well-focused developments of artificial intelligence (AI), machine learning (ML), deep learning (DL), natural language processing (NLP), cryptography, and blockchain approaches, along with their applications focused on healthcare systems. Handbook of AI-Based Models in Healthcare and Medicine: Approaches, Theories, and Applications highlights different approaches, theories, and applications of intelligent systems from a practical as well as a theoretical view of the healthcare domain. It uses a medically oriented approach in its discussions of human biology, healthcare, and medicine and presents NLP-based medical reports and medicine enhancements. The handbook includes advanced models of ML and DL for the management of healthcare systems and also discusses blockchain-based healthcare management. In addition, the handbook offers use cases where AI, ML, and DL can help solve healthcare complications. Undergraduate and postgraduate students, academicians, researchers, and industry professionals who have an interest in understanding the applications of ML/DL in the healthcare setting will want this reference on their bookshelf.




Optimal Control for Mathematical Models of Cancer Therapies


Book Description

This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.