Mathematical Models of Exoskeleton


Book Description

This book presents the current state of the problem of describing the musculoskeletal system of a person. Models of the destruction of the endoskeleton and the restoration of its functions using exoskeleton are presented. A description is given of new approaches to modeling based on the use of weightless rods of variable length with concentrated masses. The practical application to the tasks of numerical simulation of the movements of the musculoskeletal system of a person is described. Exoskeleton models with variable-length units based on absolutely hard sections and sections that change their telescopic type length have been developed. The book is intended for specialists in the field of theoretical mechanics, biomechanics, robotics and related fields. The book will be useful to teachers, as well as graduate students, undergraduates and senior students of higher educational institutions, whose research interests lie in the modeling of anthropomorphic biomechanical systems.




Designing Exoskeletons


Book Description

Designing Exoskeletons focuses on developing exoskeletons, following the lifecycle of an exoskeleton from design to manufacture. It demonstrates how modern technologies can be used at every stage of the process, such as design methodologies, CAD/CAE/CAM software, rapid prototyping, test benches, materials, heat and surface treatments, and manufacturing processes. Several case studies are presented to provide detailed considerations on developing specific topics. Exoskeletons are designed to provide work-power, rehabilitation, and assistive training to sports and military applications. Beginning with a review of the history of exoskeletons from ancient to modern times, the book builds on this by mapping out recent innovations and state-of-the-art technologies that utilize advanced exoskeleton design. Presenting a comprehensive guide to computer design tools used by bioengineers, the book demonstrates the capabilities of modern software at all stages of the process, looking at computer-aided design, manufacturing, and engineering. It also details the materials used to create exoskeletons, notably steels, engineering polymers, composites, and emerging materials. Manufacturing processes, both conventional and unconventional are discussed—for example, casting, powder metallurgy, additive manufacturing, and heat and surface treatments. This book is essential reading for those in the field of exoskeletons, such as designers, workers in research and development, engineering and design students, and those interested in robotics applied to medical devices.




Development and Testing of Hand Exoskeletons


Book Description

This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user’s hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.




Advances on Theory and Practice of Robots and Manipulators


Book Description

This proceedings volume contains papers that have been selected after review for oral presentation at ROMANSY 2014, the 20th CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators. These papers cover advances on several aspects of the wide field of Robotics as concerning Theory and Practice of Robots and Manipulators. ROMANSY 2014 is the twentieth event in a series that started in 1973 as one of the first conference activities in the world on Robotics. The first event was held at CISM (International Centre for Mechanical Science) in Udine, Italy on 5-8 September 1973. It was also the first topic conference of IFToMM (International Federation for the Promotion of Mechanism and Machine Science) and it was directed not only to the IFToMM community. Proceedings volumes of ROMANSY have been always published to be available, also after the symposium, to a large public of scholars and designers with the aim to give an overview of new advances and trends in the theory, design and practice of robots. This proceedings volume, like previous ones of the series, contains contributions with achievements covering many fields of Robotics as Theory and Practice of Robots and Manipulators that can be an inspiration for future developments.




Handbook of Biomechatronics


Book Description

Handbook of Biomechatronics provides an introduction to biomechatronic design as well as in-depth explanations of some of the most exciting and ground-breaking biomechatronic devices in the world today. Edited by Dr. Jacob Segil and written by a team of biomechatronics experts, the work begins with broad topics concerning biomechatronic design and components, followed by more detailed discussions of specific biomechatronic devices spanning many disciplines. This book is structured into three main parts: biomechatronic design, biomechatronic components, and biomechatronic devices. The biomechatronic design chapter discusses the history of biomechatronics, conceptual design theory, biomechatronic design methods, and design tools. The next section discusses the technologies involved in the following components: sensors, actuators, and control systems. The biomechatronic devices chapters contains distinct examples of biomechatronic devices spanning visual prostheses to brain-machine interfaces. Each chapter presents the development of these biomechatronic devices followed by an in-depth discussion of the current state of the art - The only book that covers biomechatronic design, components, and devices in one comprehensive text - Accessible for readers in multiple areas of study, such as bioengineering, computer science, electrical engineering, mechanical engineering, and chemical engineering - Includes the most recent and groundbreaking advances and work in the biomechatronics field through industry and academic contributors




Wearable Robots


Book Description

A wearable robot is a mechatronic system that is designed around the shape and function of the human body, with segments and joints corresponding to those of the person it is externally coupled with. Teleoperation and power amplification were the first applications, but after recent technological advances the range of application fields has widened. Increasing recognition from the scientific community means that this technology is now employed in telemanipulation, man-amplification, neuromotor control research and rehabilitation, and to assist with impaired human motor control. Logical in structure and original in its global orientation, this volume gives a full overview of wearable robotics, providing the reader with a complete understanding of the key applications and technologies suitable for its development. The main topics are demonstrated through two detailed case studies; one on a lower limb active orthosis for a human leg, and one on a wearable robot that suppresses upper limb tremor. These examples highlight the difficulties and potentialities in this area of technology, illustrating how design decisions should be made based on these. As well as discussing the cognitive interaction between human and robot, this comprehensive text also covers: the mechanics of the wearable robot and it’s biomechanical interaction with the user, including state-of-the-art technologies that enable sensory and motor interaction between human (biological) and wearable artificial (mechatronic) systems; the basis for bioinspiration and biomimetism, general rules for the development of biologically-inspired designs, and how these could serve recursively as biological models to explain biological systems; the study on the development of networks for wearable robotics. Wearable Robotics: Biomechatronic Exoskeletons will appeal to lecturers, senior undergraduate students, postgraduates and other researchers of medical, electrical and bio engineering who are interested in the area of assistive robotics. Active system developers in this sector of the engineering industry will also find it an informative and welcome resource.




Dynamics of Nonholonomic Systems


Book Description

The goal of this book is to give a comprehensive and systematic exposition of the mechanics of nonholonomic systems, including the kinematics and dynamics of nonholonomic systems with classical nonholonomic constraints, the theory of stability of nonholonomic systems, technical problems of the directional stability of rolling systems, and the general theory of electrical machines. The book contains a large number of examples and illustrations.




Exoskeletons in Rehabilitation Robotics


Book Description

The new technological advances opened widely the application field of robots. Robots are moving from the classical application scenario with structured industrial environments and tedious repetitive tasks to new application environments that require more interaction with the humans. It is in this context that the concept of Wearable Robots (WRs) has emerged. One of the most exciting and challenging aspects in the design of biomechatronics wearable robots is that the human takes a place in the design, this fact imposes several restrictions and requirements in the design of this sort of devices. The key distinctive aspect in wearable robots is their intrinsic dual cognitive and physical interaction with humans. The key role of a robot in a physical human–robot interaction (pHRI) is the generation of supplementary forces to empower and overcome human physical limits. The crucial role of a cognitive human–robot interaction (cHRI) is to make the human aware of the possibilities of the robot while allowing them to maintain control of the robot at all times. This book gives a general overview of the robotics exoskeletons and introduces the reader to this robotic field. Moreover, it describes the development of an upper limb exoskeleton for tremor suppression in order to illustrate the influence of a specific application in the designs decisions.




New Trends in Medical and Service Robotics


Book Description

This volume contains the papers of the 8th International Workshop on Medical and Service Robots (MESROB) which was held in Craiova, Romania, on June 7-10, 2023. The main topics include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands, therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, medical treatments, medical lasers, and surgical planning and navigation. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists, demonstrating that medical and service robotics will drive the technological and societal change in the coming decades.




Hydraulic and Civil Engineering Technology VIII


Book Description

All of us are dependent on a built environment constructed and maintained by civil and hydraulic engineers, and for those working in these fields, keeping up to date with the latest technological developments is vital for the safe and efficient design and operation of this infrastructure. This book presents the proceedings of HCET 2023, the 8th International Technical Conference on Frontiers of Hydraulic and Civil Engineering Technology, held from 25-27 September 2023 in Wuhan, China. HCET is an international conference which aims to enhance the development of hydraulic and civil engineering in China, with a focus on high-end, intelligent and green technologies. It seeks to do this by consolidating global wisdom and achievements and providing scientific support. HCET also offers an excellent opportunity for scientists, researchers and engineers from around the world to exchange their findings and discuss developments, establishing a basis for national and international collaboration. A total of 316 contributions were received for the 2023 edition, of which 187 were ultimately accepted after a rigorous review process and checks for quality and plagiarism. Topics covered include the research and development of concrete structure design and analysis; structural mechanics and structural engineering; building and future materials; hydraulic engineering; geological exploration and earthquake engineering; building technology; urban planning; road, bridge and traffic engineering; energy infrastructure; environmental engineering and advanced engineering technologies, and interdisciplinary sciences and applications. Covering a wide range of subjects related to hydraulic engineering and civil engineering technology and associated transdisciplinary sciences, the book will be of interest to all those working in the field.