Mathematical Olympiad in China (2007-2008)


Book Description

The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2006 to 2008. Mathematical Olympiad problems with solutions for the years 2002?2006 appear in an earlier volume, Mathematical Olympiad in China.




Mathematical Olympiad In China (2009-2010): Problems And Solutions


Book Description

The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume of comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2009 to 2010. Mathematical Olympiad problems with solutions for the years 2002-2008 appear in an earlier volume, Mathematical Olympiad in China.




Mathematical Olympiad in China (2009-2010)


Book Description

The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume of comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2009 to 2010. Mathematical Olympiad problems with solutions for the years 2002OCo2008 appear in an earlier volume, Mathematical Olympiad in China."




A First Step To Mathematical Olympiad Problems


Book Description

See also A SECOND STEP TO MATHEMATICAL OLYMPIAD PROBLEMS The International Mathematical Olympiad (IMO) is an annual international mathematics competition held for pre-collegiate students. It is also the oldest of the international science olympiads, and competition for places is particularly fierce. This book is an amalgamation of the first 8 of 15 booklets originally produced to guide students intending to contend for placement on their country's IMO team. The material contained in this book provides an introduction to the main mathematical topics covered in the IMO, which are: Combinatorics, Geometry and Number Theory. In addition, there is a special emphasis on how to approach unseen questions in Mathematics, and model the writing of proofs. Full answers are given to all questions. Though A First Step to Mathematical Olympiad Problems is written from the perspective of a mathematician, it is written in a way that makes it easily comprehensible to adolescents. This book is also a must-read for coaches and instructors of mathematical competitions.




Lecture Notes on Mathematical Olympiad Courses


Book Description

Olympiad mathematics is not a collection of techniques of solving mathematical problems but a system for advancing mathematical education. This book is based on the lecture notes of the mathematical Olympiad training courses conducted by the author in Singapore. Its scope and depth not only covers and exceeds the usual syllabus, but introduces a variety concepts and methods in modern mathematics. In each lecture, the concepts, theories and methods are taken as the core. The examples are served to explain and enrich their intension and to indicate their applications. Besides, appropriate number of test questions is available for reader''s practice and testing purpose. Their detailed solutions are also conveniently provided. The examples are not very complicated so that readers can easily understand. There are many real competition questions included which students can use to verify their abilities. These test questions are from many countries, e.g. China, Russia, USA, Singapore, etc. In particular, the reader can find many questions from China, if he is interested in understanding mathematical Olympiad in China. This book serves as a useful textbook of mathematical Olympiad courses, or as a reference book for related teachers and researchers. Errata(s). Errata. Sample Chapter(s). Lecture 1: Operations on Rational Numbers (145k). Request Inspection Copy. Contents: .: Operations on Rational Numbers; Linear Equations of Single Variable; Multiplication Formulae; Absolute Value and Its Applications; Congruence of Triangles; Similarity of Triangles; Divisions of Polynomials; Solutions to Testing Questions; and other chapters. Readership: Mathematics students, school teachers, college lecturers, university professors; mathematics enthusiasts




50th IMO - 50 Years of International Mathematical Olympiads


Book Description

In July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO). For the very first time the number of participating countries exceeded 100, with 104 countries from all continents. Celebrating the 50th anniversary of the IMO provides an ideal opportunity to look back over the past five decades and to review its development to become a worldwide event. This book is a report about the 50th IMO as well as the IMO history. A lot of data about all the 50 IMOs are included. We list the most successful contestants, the results of the 50 Olympiads and the 112 countries that have ever taken part. It is impressive to see that many of the world’s leading research mathematicians were among the most successful IMO participants in their youth. Six of them gave presentations at a special celebration: Bollobás, Gowers, Lovász, Smirnov, Tao and Yoccoz. This book is aimed at students in the IMO age group and all those who have interest in this worldwide leading competition for highschool students.




Selected Problems of the Vietnamese Mathematical Olympiad (1962-2009)


Book Description

Vietnam has actively organized the National Competition in Mathematics and since 1962, the Vietnamese Mathematical Olympiad (VMO). On the global stage, Vietnam has also competed in the International Mathematical Olympiad (IMO) since 1974 and constantly emerged as one of the top ten. To inspire and further challenge readers, we have gathered in this book selected problems of the VMO from 1962 to 2008. A number of Selection Test problems are also included to aid in the formation and training of a national team for IMO. The book is highly useful for high school students and teachers, coaches and instructors preparing for mathematical olympiads, as well as non-experts simply interested in having the edge over their opponents in mathematical competitions.




Mathematical Olympiad In China (2011-2014): Problems And Solutions


Book Description

The International Mathematical Olympiad (IMO) is a very important competition for high school students. China has taken part in the IMO 31 times since 1985 and has won the top ranking for countries 19 times, with a multitude of gold medals for individual students. The six students China has sent every year were selected from 60 students among approximately 300 students who took part in the annual China Mathematical Competition during the winter months.This book includes the problems and solutions of the most important mathematical competitions from 2010 to 2014 in China, such as China Mathematical Competition, China Mathematical Olympiad, China Girls' Mathematical Olympiad. These problems are almost exclusively created by the experts who are engaged in mathematical competition teaching and researching. Some of the solutions are from national training team and national team members, their wonderful solutions being the feature of this book. This book is useful to mathematics fans, middle school students engaged in mathematical competition, coaches in mathematics teaching and teachers setting up math elective courses.




Geometric Inequalities: In Mathematical Olympiad And Competitions


Book Description

In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they won the first place almost every year.The author is one of the coaches of China's IMO National Team, whose students have won many gold medals many times in IMO.This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book elaborates on Geometric Inequality problems such as inequality for the inscribed quadrilateral, the area inequality for special polygons, linear geometric inequalities, etc.




Sequences And Mathematical Induction:in Mathematical Olympiad And Competitions (2nd Edition)


Book Description

In China, lots of excellent maths students takes an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years, China's IMO Team has achieved outstanding results — they have won the first place almost every year.The author is one of the senior coaches of China's IMO National Team, he is the headmaster of Shanghai senior high school which is one of the best high schools of China. In the past decade, the students of this school have won the IMO gold medals almost every year.The author attempts to use some common characteristics of sequence and mathematical induction to fundamentally connect Math Olympiad problems to particular branches of mathematics. In doing so, the author hopes to reveal the beauty and joy involved with math exploration and at the same time, attempts to arouse readers' interest of learning math and invigorate their courage to challenge themselves with difficult problems.