Mathematical Olympiads for Elementary School 4 - Fourth Grade


Book Description

The Mathematical Olympiads for Elementary School are open mathematical Olympiads for students from 1st to 4th grade of elementary school, and they have been held every year in the city of Moscow since 1996, their first editions taking place in the facilities of the Moscow State University - Maly Mekhmat. Although initially these Olympiads were conceived for students of a study circle of elementary school, then it was extended to students in general since 2005. Being the Technological University of Russia - MIREA its main headquarters today. Likewise, these Olympiads consist of two rounds, a qualifying round and a final round, both consisting of a written exam. The problems included in this book correspond to the final round of these Olympiads, for the 4th grade of elementary school. In this workbook has been compiled all the Olympiads held during the years 2011-2020 and is especially aimed at schoolchildren between 9 and 10 years old, with the aim that any student interested in mathematics either in preparing for a competition or in simply practicing entertaining problems to improve his math skills, challenging himself to solve these interesting problems (recommended even to elementary school children in upper grades with little or no experience in Math Olympiads and who require comprehensive preparation before a competition); or it could even be used for a self-evaluation in this competition, trying the student to solve the greatest number of problems in each exam in a maximum time of 2 hours. It can also be useful for teachers, parents, and study circles in mathematics. The book has been carefully crafted so that the student can work on the same book without the need for additional sheets. What will allow the student to have an orderly record of the problems already solved. Each exam includes a set of 8 problems from different school math topics. To be able to face these problems successfully, no greater knowledge is required than that covered in the school curriculum; however, many of these problems require an ingenious approach to be tackled successfully. Students are encouraged to keep trying to solve each problem as a personal challenge, as many times as necessary; and to parents who continue to support their children in their disciplined preparation. Once an answer is obtained, you can check it against the answers given at the end of the book.







USA and International Mathematical Olympiads, 2005


Book Description

The Mathematical Olympiad examinations, covering the USA Mathematical Olympiad (USAMO) and the International Mathematical Olympiad (IMO), have been published annually by the MAA American Mathematics Competitions since 1976. This collection of excellent problems and beautiful solutions is a valuable companion for students who wish to develop their interest in mathematics.




50th IMO - 50 Years of International Mathematical Olympiads


Book Description

In July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO). For the very first time the number of participating countries exceeded 100, with 104 countries from all continents. Celebrating the 50th anniversary of the IMO provides an ideal opportunity to look back over the past five decades and to review its development to become a worldwide event. This book is a report about the 50th IMO as well as the IMO history. A lot of data about all the 50 IMOs are included. We list the most successful contestants, the results of the 50 Olympiads and the 112 countries that have ever taken part. It is impressive to see that many of the world’s leading research mathematicians were among the most successful IMO participants in their youth. Six of them gave presentations at a special celebration: Bollobás, Gowers, Lovász, Smirnov, Tao and Yoccoz. This book is aimed at students in the IMO age group and all those who have interest in this worldwide leading competition for highschool students.




Problem-Solving Strategies


Book Description

A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.




Mathematical Olympiad in China (2007-2008)


Book Description

The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2006 to 2008. Mathematical Olympiad problems with solutions for the years 2002?2006 appear in an earlier volume, Mathematical Olympiad in China.




Academic Competitions for Gifted Students


Book Description

This handbook covers 170 competitions, criteria for selecting events that match students' strengths/weaknesses, strategies for maximizing the benefits of competitions, and ways to avoid potential problems.




The IMO Compendium


Book Description

"The IMO Compendium" is the ultimate collection of challenging high-school-level mathematics problems and is an invaluable resource not only for high-school students preparing for mathematics competitions, but for anyone who loves and appreciates mathematics. The International Mathematical Olympiad (IMO), nearing its 50th anniversary, has become the most popular and prestigious competition for high-school students interested in mathematics. Only six students from each participating country are given the honor of participating in this competition every year. The IMO represents not only a great opportunity to tackle interesting and challenging mathematics problems, it also offers a way for high school students to measure up with students from the rest of the world. Until the first edition of this book appearing in 2006, it has been almost impossible to obtain a complete collection of the problems proposed at the IMO in book form. "The IMO Compendium" is the result of a collaboration between four former IMO participants from Yugoslavia, now Serbia and Montenegro, to rescue these problems from old and scattered manuscripts, and produce the ultimate source of IMO practice problems. This book attempts to gather all the problems and solutions appearing on the IMO through 2009. This second edition contains 143 new problems, picking up where the 1959-2004 edition has left off.




Inequalities


Book Description

This book is intended for the Mathematical Olympiad students who wish to prepare for the study of inequalities, a topic now of frequent use at various levels of mathematical competitions. In this volume we present both classic inequalities and the more useful inequalities for confronting and solving optimization problems. An important part of this book deals with geometric inequalities and this fact makes a big difference with respect to most of the books that deal with this topic in the mathematical olympiad. The book has been organized in four chapters which have each of them a different character. Chapter 1 is dedicated to present basic inequalities. Most of them are numerical inequalities generally lacking any geometric meaning. However, where it is possible to provide a geometric interpretation, we include it as we go along. We emphasize the importance of some of these inequalities, such as the inequality between the arithmetic mean and the geometric mean, the Cauchy-Schwarz inequality, the rearrangementinequality, the Jensen inequality, the Muirhead theorem, among others. For all these, besides giving the proof, we present several examples that show how to use them in mathematical olympiad problems. We also emphasize how the substitution strategy is used to deduce several inequalities.




Mathematical Olympiad Treasures


Book Description

Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.