Mathematical Techniques in Crystallography and Materials Science


Book Description

This practical guide and reference serves as a unified source book for students and professionals, and it provides a solid basis for further studies in more specialized literature. Based Prince’s decades of practical experience, it can be recommended as an introduction for beginners in crystallography, as a refresher and handy guide for crystallographers working on specific problems, and as a reference for others seeking a dictionary of basic mathematical and crystallographic terms. The third edition further clarifies key points.




Mathematical Techniques in Crystallography and Materials Science


Book Description

In the course of 30 years as a practicing crystallographer I have frequently been faced with the necessity of finding out a little bit about some general branch of mathematics with which I was previously unfamiliar. Under these circumstances I have usually followed the common practice of seeking out some colleague who would be expected to have a thorough knowledge of the subject. I would then find myself faced either with an involved lecture in which the colleague would attempt to distill a lifetime of experience into a form that was comprehensible to a novice with a very different background, or with a book about the subject, written by a specialist, that contained far more information than I really wanted to know. I would have to separate the few kernels of useful material from a large volume of what would probably be wheat to someone else, but was chaff to me. In the course of that time I have acquired a collection of books to which I frequently refer. Most of these have a small number of thoroughly dog-eared pages, along with many that have scarcely been opened. During the same period I have been privileged to associate and collabo rate with a number of materials scientists who were not trained as crystal lographers, but whose interests required them to understand particular details of some structural problem.







Mathematical Techniques in Crystallography and Materials Science


Book Description

Crystallographers have to apply many mathematical methods in their daily work. If ever they have a problem, this book will help to solve it. The newcomer starting work will learn how to apply these tools, the practicing crystallographer will find all the data and background material he wants to look up. In the decade since the first edition was published, new things have happened that required revision beyond correction of errors. Two chapters have been added: a section on the projection matrix and another on fast Fourier Transform. The author collected the information during his professional career. The success of the first edition indicates that many other practicing crystallographers just need exactly that information.







Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition


Book Description

A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. The original book had seven long chapters that may have made its use as a text - convenient. So the second edition is broken down into 25 shorter chapters. The ?rst ?fteen are concerned with the fundamentals of powder diffraction, which makes it much more logical, considering a typical 16-week long semester. The last ten ch- ters are concerned with practical examples of structure solution and re?nement, which were preserved from the ?rst edition and expanded by another example – R solving the crystal structure of Tylenol .




Fundamentals of Crystallography


Book Description

In recent years crystallographic techniques have found applications in a wide range of subjects, and these applications in turn have led to exciting developments in the field of crystallography itself. This completely revised text offers a rigorous treatment of the theory and describes experimental applications in many fields: crystal symmetry, crystallographic computing, X-ray diffraction, crystal structure solution, mineral and inorganic crystal chemistry, protein crystallography, crystallography of real crystals, and crystal physics. A set of pedagogical tools on CD-ROM has been added to this new edition.




Foundations of Crystallography with Computer Applications


Book Description

X-ray crystallography provides a unique opportunity to study the arrangement of atoms in a molecule. This book's modern computer-graphics centered approach facilitates the extrapolation of these valuable observations. A unified treatment of crystal systems, the book explains how atoms are arranged in crystals using the metric matrix. Featuring t




Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials


Book Description

A number of general-purpose, reasonably accurate and well-tested ab-initio codes for crystals are discussed in this book. The aim is to expand competence of their application in material sciences and solid-state physics. The book addresses particularly readers with a general knowledge in quantum chemistry and intends to give a deeper insight into the special algorithms and computational techniques in ab-initio computer codes for crystals. Three different programs which are available to all interested potential users on request are presented.




Imperfect Bifurcation in Structures and Materials


Book Description

Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.