Matlab® in Bioscience and Biotechnology


Book Description

MATLAB® in bioscience and biotechnology presents an introductory Matlab course oriented towards various collaborative areas of biotechnology and bioscience. It concentrates on Matlab fundamentals and gives examples of its application to a wide range of current bioengineering problems in computational biology, molecular biology, bio-kinetics, biomedicine, bioinformatics, and biotechnology. In the last decade Matlab has been presented to students as the first computer program they learn. Consequently, many non-programmer students, engineers and scientists have come to regard it as user-friendly and highly convenient in solving their specific problems. Numerous books are available on programming in Matlab for engineers in general, irrespective of their specialization, or for those specializing in some specific area, but none have been designed especially for such a wide, interdisciplinary, and topical area as bioengineering. Thus, in this book, Matlab is presented with examples and applications to various school-level and advanced bioengineering problems - from growing populations of microorganisms and population dynamics, reaction kinetics and reagent concentrations, predator-prey models, mass-transfer and flow problems, to sequence analysis and sequence statistics. - This is the first book intended as a manual introducing biologists and other biotechnology engineers to work with Matlab - It is suitable for beginners and inexperienced users; however, applications of Matlab to advanced problems such as the Monte Carlo method, curve fitting, and reliable machine diagnostics make the book relevant to university teachers as well - The book is different in that it assumes a modest mathematical background for the reader and introduces the mathematical or technical concepts with a somewhat traditional approach; Matlab is then used as a tool for subsequent computer solution




Research Methodology in Bioscience and Biotechnology


Book Description

This monograph offers a comprehensive guide to good research practices and mindsets, covering a wide range of topics across 8 chapters. Readers will find numerous themes and strategies that can help them develop their research skills and achieve their objectives, from effective proposal writing to stress management and upskilling. This book explains the purpose, process, tips, and mistakes of writing proposals, theses, articles, and reviews in clear and straightforward language, allowing readers to develop good research plans. By applying the advice and insights offered in this book, students and researchers can improve the quality of their work, cultivate research integrity, and develop good publication plans, write well, and reduce rejection rates. Research outputs will be more likely to be of high quality if students and researchers are encouraged to cultivate these pieces of advice. The focus of the book is not solely on the outcomes of research. Rather, it also delves into mindset, habits, adaptability, time management, stress management, recent tools for upskilling, planning, and execution. Throughout the book, the author seeks to instill a growth mindset in the readers, encouraging them to develop positive research habits and behaviors. KPIs, particularly publications, shall not be used as a reason to erode research integrity and ethnicity; therefore, plagiarism, self-citation, falsifying data, exaggerating findings, authorship in publications, the use of AI tools, CRediT, and COPE are discussed. This book contains interviews with high-profile researchers, top management at institutions, policy advisers, etc., whose opinions and advice the readers will find valuable. Overall, this all-in-one guide is an essential resource for postgraduate students, post-doctoral fellows, and academics who are struggling to find a survival strategy in the rapidly changing research environment. The book assists readers in developing right mindset, planning their research and publications, and in achieving their predetermined objectives.




Plant Biology and Biotechnology


Book Description

Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices – the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book’s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.




The Funding of Biopharmaceutical Research and Development


Book Description

The funding of biopharmaceutical research and development provides a comprehensive critical review of the funding of research and development (R&D) in the human biopharmaceutical market sector. It addresses both private and public funding sources available in the US and internationally. The biopharmaceutical market is among the most research-intensive market sectors globally. Clinical researchers face a multitude of public and private funding options with respect to bringing their idea or innovation to market. These funding options are continually changing and complex, and are expected to decrease in the near future. A lack of understanding of the scale, scope, and inner workings of the funding aspects of R&D can, at times, act as a barrier for all involved, and can slow down or even eliminate the R&D process. The book lessens these barriers by describing the theoretical underpinnings, present practice, and trends in R&D funding in this market sector, both in the US and internationally. This includes a review and discussion of public-private partnership activity and their inner-workings, noting the complementary relationship between public and private funding. The book also contains an overview of the inner-workings of strategic alliance activity, including the advantages and disadvantages for each party. It goes on to provide an outline of venture capital activity, detailing the methods by which venture capital firms raise capital and are organized, a description of the venture capital-entrepreneur arrangement, and the effects of this arrangement. The book also presents an overview of the IPO process and the various fates of firms going public. - Presents a comprehensive view of the funding issues of R&D in this market sector, adopting a theory-to-practice approach - A comprehensive and analytical review of the biopharmaceutical R&D literature and practice - An overview of the various and competing/complementary theories of the firm and valuation methods as they apply to biopharmaceutical R&D




Open Source Software in Life Science Research


Book Description

The free/open source approach has grown from a minor activity to become a significant producer of robust, task-orientated software for a wide variety of situations and applications. To life science informatics groups, these systems present an appealing proposition - high quality software at a very attractive price. Open source software in life science research considers how industry and applied research groups have embraced these resources, discussing practical implementations that address real-world business problems.The book is divided into four parts. Part one looks at laboratory data management and chemical informatics, covering software such as Bioclipse, OpenTox, ImageJ and KNIME. In part two, the focus turns to genomics and bioinformatics tools, with chapters examining GenomicsTools and EBI Atlas software, as well as the practicalities of setting up an 'omics' platform and managing large volumes of data. Chapters in part three examine information and knowledge management, covering a range of topics including software for web-based collaboration, open source search and visualisation technologies for scientific business applications, and specific software such as DesignTracker and Utopia Documents. Part four looks at semantic technologies such as Semantic MediaWiki, TripleMap and Chem2Bio2RDF, before part five examines clinical analytics, and validation and regulatory compliance of free/open source software. Finally, the book concludes by looking at future perspectives and the economics and free/open source software in industry. - Discusses a broad range of applications from a variety of sectors - Provides a unique perspective on work normally performed behind closed doors - Highlights the criteria used to compare and assess different approaches to solving problems




Plant Transposable Elements


Book Description

This new volume provides an up-to-date understanding of the numerous classes of plant transposable elements, the mobile units of DNA that comprise large portions of plant genomes, which are an important contributor for gene and genome evolution. Transposable elements (TEs) are major components of large plant genomes and main drivers of genome evolution, known to produce a wide variety of changes in plant gene expression and function. Providing a systematic interpretation of protocols designed to characterize TEs and their biotechnological roles, the volume explores TEs in plant development, their architecture, their epigenetic regulation, their use in DNA repair, their evolution and speciation, while also highlighting their importance in the approaching epoch of climate change. The volume begins with introduction of transposable elements, covering their classification and transposition. It delves into protocols designed to characterize TEs and their biotechnological applications. The book includes computational approaches for prediction and analysis, retro-transposon capture sequencing, and more. The section on transposon biology focuses on its role in plant development and as natural genetic engineers of genome mutation, evolution, and speciation. The book looks further into transposon applications in genome editing, exploring tagging and mutagenesis, genome engineering, and more.




NMR Metabolomics in Cancer Research


Book Description

The application of nuclear magnetic resonance (NMR) metabolomics in cancer research requires an understanding of the many possibilities that NMR metabolomics can offer, as well as of the specific characteristics of the cancer metabolic phenotype and the open questions in cancer research. NMR metabolomics in cancer research presents a detailed account of the NMR spectroscopy methods applied to metabolomics mixture analysis along with a discussion of their advantages and disadvantages. Following an overview of the potential use of NMR metabolomics in cancer research, the book begins with an examination of the cancer metabolic phenotype and experimental methodology, before moving on to cover data pre-processing and data analysis. Chapters in the latter part of the book look at dynamic metabolic profiling, biomarker discovery, and the application of NMR metabolomics for different types of cancer, before a concluding chapter discusses future perspectives in the field. - Focused description of NMR spectroscopy needed by cancer biologists who are starting to use metabolomics - Current overview of knowledge related to the cancer metabolic phenotype from the perspective of metabolomics applications - Information about the best practices in NMR metabolomics experimentation and data preprocessing as applied to different sample types




Nature


Book Description




From Plant Genomics to Plant Biotechnology


Book Description

With the appearance of methods for the sequencing of genomes and less expensive next generation sequencing methods, we face rapid advancements of the -omics technologies and plant biology studies: reverse and forward genetics, functional genomics, transcriptomics, proteomics, metabolomics, the movement at distance of effectors and structural biology. From plant genomics to plant biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, understanding the epigenetic control and epigenetic memory, the roles of non-coding RNAs, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics and plants modified to specific aims. In the forthcoming years these advancements will support the production of plant varieties better suited to resist biotic and abiotic stresses, for food and non-food applications.This book covers these issues, showing how such technologies are influencing the plant field in sectors such as the selection of plant varieties and plant breeding, selection of optimum agronomic traits, stress-resistant varieties, improvement of plant fitness, improving crop yield, and non-food applications in the knowledge based bio-economy. - Discusses a broad range of applications: the examples originate from a variety of sectors (including in field studies, breeding, RNA regulation, pharmaceuticals and biotech) and a variety of scientific areas (such as bioinformatics, -omics sciences, epigenetics, and the agro-industry) - Provides a unique perspective on work normally performed 'behind closed doors'. As such, it presents an opportunity for those within the field to learn from each other, and for those on the 'outside' to see how different groups have approached key problems - Highlights the criteria used to compare and assess different approaches to solving problems. Shows the thinking process, practical limitations and any other considerations, aiding in the understanding of a deeper approach




Ocular Transporters and Receptors


Book Description

Ocular transporters and receptors contains detailed descriptions of major transporters and receptors expressed in the eye, with special emphasis on their role in drug delivery. The complex anatomy and the existence of multiple barriers in the eye pose a considerable challenge to successful drug delivery to the eye. Hence ocular transporters and receptors are important targets for drug delivery. A significant advancement has been made in the field of ocular transport research and their role in drug delivery. In this book the cutting edge research being carried out in this field is compiled and summarized. The book focuses on key areas, including the anatomy and physiology of the eye, biology of ocular transporters and receptors, techniques in characterization of transporters and receptors, transporters and receptors in the anterior and posterior segment in the eye, the role of ocular transporters and receptors in drug delivery, and transporter-metabolism interplay in the eye. - Highly focused on ocular transporters - Most up-to-date research compilation - Detailed description of role of transporters and receptors in ocular drug discovery and delivery