Matrices and Linear Algebra


Book Description

Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it. This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations. Table of Contents: l. The Algebra of Matrices 2. Linear Equations 3. Vector Spaces 4. Determinants 5. Linear Transformations 6. Eigenvalues and Eigenvectors 7. Inner Product Spaces 8. Applications to Differential Equations For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.




MATRIX AND LINEAR ALGEBRA AIDED WITH MATLAB


Book Description

With the inclusion of applications of singular value decomposition (SVD) and principal component analysis (PCA) to image compression and data analysis, this edition provides a strong foundation of linear algebra needed for a higher study in signal processing. The use of MATLAB in the study of linear algebra for a variety of computational purposes and the programmes provided in this text are the most attractive features of this book which strikingly distinguishes it from the existing linear algebra books needed as pre-requisites for the study of engineering subjects. This book is highly suitable for undergraduate as well as postgraduate students of mathematics, statistics, and all engineering disciplines. The book will also be useful to Ph.D. students for relevant mathematical resources.NEW TO THIS EDITION The Third Edition of this book includes: • Simultaneous diagonalization of two diagonalizable matrices • Comprehensive exposition of SVD with applications in shear analysis in engineering • Polar Decomposition of a matrix • Numerical experimentation with a colour and a black-and-white image compression using MATLAB • PCA methods of data analysis and image compression with a list of MATLAB codes




Linear Algebra and Matrix Theory


Book Description

Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.




A Second Course in Linear Algebra


Book Description

A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.




Introduction to Applied Linear Algebra


Book Description

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.




Linear Algebra: Gateway to Mathematics: Second Edition


Book Description

Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.




Matrix Analysis and Applied Linear Algebra


Book Description

This book avoids the traditional definition-theorem-proof format; instead a fresh approach introduces a variety of problems and examples all in a clear and informal style. The in-depth focus on applications separates this book from others, and helps students to see how linear algebra can be applied to real-life situations. Some of the more contemporary topics of applied linear algebra are included here which are not normally found in undergraduate textbooks. Theoretical developments are always accompanied with detailed examples, and each section ends with a number of exercises from which students can gain further insight. Moreover, the inclusion of historical information provides personal insights into the mathematicians who developed this subject. The textbook contains numerous examples and exercises, historical notes, and comments on numerical performance and the possible pitfalls of algorithms. Solutions to all of the exercises are provided, as well as a CD-ROM containing a searchable copy of the textbook.




Introduction to Linear and Matrix Algebra


Book Description

This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.







Applied Linear Algebra and Matrix Analysis


Book Description

This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.