Matrix and Operator Equations and Applications


Book Description

This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed. In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed. The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.




Operator Functions And Operator Equations


Book Description

This book is devoted to norm estimates for operator-valued functions of one and two operator arguments, as well as to their applications to spectrum perturbations of operators and to linear operator equations, i.e. to equations whose solutions are linear operators. Linear operator equations arise in both mathematical theory and engineering practice. The norm estimates suggested in the book have applications to the theories of ordinary differential, difference, functional-differential and integro-differential equations, as well as to the theories of integral operators and analytic functions. This book provides new tools for specialists in matrix theory and functional analysis. A significant part of the book covers the theory of triangular representations of operators that was developed by L de Branges, M S Brodskii, I C Gohberg, M G Krein, M S Livsic and other mathematicians.




Linear Operators and Matrices


Book Description

In September 1998, during the 'International Workshop on Analysis and Vibrat ing Systems' held in Canmore, Alberta, Canada, it was decided by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series 'Operator Theory: Advances and Applications'. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now presented to the reader. Regarding accep tance of papers we followed the usual rules of the journal 'Integral Equations and Operator Theory'. The papers are dedicated to different problems in matrix and operator theory, especially to the areas in which Peter contributed so richly. At our request, Peter agreed to write an autobiographical paper, which appears at the beginning of the volume. It continues with the list of Peter's publications. We believe that this volume will pay tribute to Peter on his outstanding achievements in different areas of mathematics. 1. Gohberg, H. Langer P ter Lancast r *1929 Operator Theory: Advances and Applications, Vol. 130, 1- 7 © 2001 Birkhiiuser Verlag Basel/Switzerland My Life and Mathematics Peter Lancaster I was born in Appleby, a small county town in the north of England, on November 14th, 1929. I had two older brothers and was to have one younger sister. My family moved around the north of England as my father's work in an insurance company required.




Approximate Solution of Operator Equations


Book Description

One of the most important chapters in modern functional analysis is the theory of approximate methods for solution of various mathematical problems. Besides providing considerably simplified approaches to numerical methods, the ideas of functional analysis have also given rise to essentially new computation schemes in problems of linear algebra, differential and integral equations, nonlinear analysis, and so on. The general theory of approximate methods includes many known fundamental results. We refer to the classical work of Kantorovich; the investigations of projection methods by Bogolyubov, Krylov, Keldysh and Petrov, much furthered by Mikhlin and Pol'skii; Tikho nov's methods for approximate solution of ill-posed problems; the general theory of difference schemes; and so on. During the past decade, the Voronezh seminar on functional analysis has systematically discussed various questions related to numerical methods; several advanced courses have been held at Voronezh Uni versity on the application of functional analysis to numerical mathe matics. Some of this research is summarized in the present monograph. The authors' aim has not been to give an exhaustive account, even of the principal known results. The book consists of five chapters.




Polynomial Operator Equations in Abstract Spaces and Applications


Book Description

Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation




Fundamentals of Matrix Analysis with Applications


Book Description

An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations. Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers’ interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss’s instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features: Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.




Linear Algebra and Linear Operators in Engineering


Book Description

Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical sciences. Also included are several numerical applications, complete with Mathematica solutions and code, giving the student a "hands-on" introduction to numerical analysis. Linear Algebra and Linear Operators in Engineering is ideally suited as the main text of an introductory graduate course, and is a fine instrument for self-study or as a general reference for those applying mathematics. Contains numerous Mathematica examples complete with full code and solutions Provides complete numerical algorithms for solving linear and nonlinear problems Spans elementary notions to the functional theory of linear integral and differential equations Includes over 130 examples, illustrations, and exercises and over 220 problems ranging from basic concepts to challenging applications Presents real-life applications from chemical, mechanical, and electrical engineering and the physical sciences




Spectral Theory and Applications of Linear Operators and Block Operator Matrices


Book Description

Examining recent mathematical developments in the study of Fredholm operators, spectral theory and block operator matrices, with a rigorous treatment of classical Riesz theory of polynomially-compact operators, this volume covers both abstract and applied developments in the study of spectral theory. These topics are intimately related to the stability of underlying physical systems and play a crucial role in many branches of mathematics as well as numerous interdisciplinary applications. By studying classical Riesz theory of polynomially compact operators in order to establish the existence results of the second kind operator equations, this volume will assist the reader working to describe the spectrum, multiplicities and localization of the eigenvalues of polynomially-compact operators.




Factorization of Matrix Functions and Singular Integral Operators


Book Description

A few years aga the authors started a project of a book on the theory of systems of one-dimensional singular integral equa tions which was planned as a continuation of the monograph by one of the authors and N. Ya. Krupnik ~~ concerning scalar equa tions. This set of notes was initiated as a chapter dealing with problems of factorization of matrix functions vis-a-vis appli cations to systems of singular integral equations. Working systematically onthischapter and adding along the way new points of view, new proofs and results, we finally saw that the material connected with factorizations is of independent interest and we decided to publish this chapter as aseparate volume. In fact, because of recent activity, the amount of material was quite large and we quickly learned that we cannot cover all of the results in complete detail. We have tried to include a represen tative variety of all kinds of methods, techniques,results and applications. Apart of the current work exposes results from the Russian literature which have never appeared in English translation. We have also decided to reflect some of the recent results which make interesting connections between factorization of matrix functions and systems theory. The field remains very active and many results and connec tions are still not weIl understood. These notes should be viewed as a stepping stone to further development. The authors hope that sometime they will return to complete their original plan.




Nonnegative Matrices, Positive Operators, And Applications


Book Description

Nonnegative matrices and positive operators are widely applied in science, engineering, and technology. This book provides the basic theory and several typical modern science and engineering applications of nonnegative matrices and positive operators, including the fundamental theory, methods, numerical analysis, and applications in the Google search engine, computational molecular dynamics, and wireless communications.Unique features of this book include the combination of the theories of nonnegative matrices and positive operators as well as the emphasis on applications of nonnegative matrices in the numerical analysis of positive operators, such as Markov operators and Frobenius-Perron operators both of which play key roles in the statistical and stochastic studies of dynamical systems.It can be used as a textbook for an upper level undergraduate or beginning graduate course in advanced matrix theory and/or positive operators as well as for an advanced topics course in operator theory or ergodic theory. In addition, it serves as a good reference for researchers in mathematical sciences, physical sciences, and engineering.