Matrix Metalloproteinases and TIMPs


Book Description

This study covers the sequence information, three-dimensional structures, activation, protein substrates, specificity requirements, inhibition, and biological roles of identified MMPs.




Extracellular Matrix Degradation


Book Description

Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease.




Matrix Metalloproteinase Inhibitors in Cancer Therapy


Book Description

Cutting-edge investigators review the current status of the entire field, from the biology of MMPs through the current clinical studies. The authors include many leading scientists from pharmaceutical companies who present all the latest concepts and results on the preferred design strategies for MMP inhibitors, their molecular mechanisms, and their substrates. In addition, they fully describe their personal research on specific MMP inhibitors, detailing vanguard design strategies, their in vitro activity, the outcome of animal model studies and, where available, their toxicology, safety, efficacy in human clinical trials. Comprehensive and state-of-the-art, Matrix Metalloproteinase Inhibitors in Cancer Therapy offers basic and clinical investigators alike a richly informative summary of all the latest research on these powerful new drugs, and their high promise as emerging cancer therapeutics.




Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Target Tissues and Therapy


Book Description

Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Target Tissues and Therapy, Volume, Volume 148, the latest volume in the Progress in Molecular Biology and Translational Science series covers a variety of timely topics, with chapters focusing on The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs, Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target, Regulation of Matrix Metalloproteinase in the Pathogenesis of Diabetic Retinopathy, Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia, and Matrix Metalloproteinases, Neural Extracellular Matrix, and Central Nervous System Pathology. This volume is the second part of a thematic on matrix metalloproteinases and tissue remodeling in health and disease. It focuses on the role of MMPs in other systems, target tissues, and pathological disorders and the potential benefits of MMP inhibitors in various disorders. Serves as the second part of a thematic on matrix metalloproteinases and tissue remodeling in health and disease Focuses on cardiovascular remodeling Contains contributions from leading authorities on the topics Publishes cutting-edge reviews in molecular biology




Tetracyclines in Biology, Chemistry and Medicine


Book Description

The tetracyclines have an illustrious history as therapeutic agents which dates back over half a century. Initially discovered as an antibiotic in 1947, the four ringed molecule has captured the fancy of chemists and biologists over the ensuing decades. Of further interest, as described in the chapter by George Armelagos, tetracyclines were already part of earlier cultures, 1500-1700 years ago, as revealed in traces of drug found in Sudanese Nubian mummies. The diversity of chapters which this book presents to the reader should illus trate the many disciplines which have examined and seen benefits from these fascinating natural molecules. From antibacterial to anti-inflammatory to anti autoimmunity to gene regulation, tetracyclines have been modified and redesigned for various novel properties. Some have called this molecule a biol ogist's dream because of its versatility, but others have seen it as a chemist's nightmare because of the synthetic chemistry challenges and "chameleon-like" properties (see the chapter by S. Schneider).




Vascular Development


Book Description

The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.




Vascular Pharmacology: Cytoskeleton and Extracellular Matrix


Book Description

Vascular Pharmacology: Cytoskeleton and Extracellular Matrix, Volume 81, contains the latest information on the vascular cytoskeleton and extracellular matrix that is presented with helpful illustrations and supporting references by prominent scientists and highly-recognized experts in the vascular field. Topics of interest in this new release include Pharmacology of the Vascular Cytoskeleton and Extracellular Matrix, The Dynamic Actin Cytoskeleton in Smooth Muscle, The Role of the Actin Cytoskeleton in the Regulation of Vascular Inflammation, The Smoothelin Family of Proteins and the Smooth Muscle Cell Contractile Apparatus, Smooth Muscle Cytoskeletal Network Regulates Expression of the Profibrotic Genes PAI-1 and CTGF, and more. - Presents a must-read book on the vascular cytoskeleton and extracellular matrix - Contains up-to-date information on the structure, function and development of the vascular cell cytoskeleton - Includes contributors from prominent scientists and highly-recognized experts with major accomplishments in the fields of the vascular cytoskeleton, extracellular matrix, mechanotransduction and vascular remodeling




Pathophysiological Aspects of Proteases


Book Description

This book provides a comprehensive overview of the multifaceted field of protease in the cellular environment and focuses on the recently elucidated functions of complex proteolytic systems in physiology and pathophysiology. Given the breadth and depth of information covered in the respective contributions, the book will be immensely useful for researchers working to identify targets for drug development. Multidisciplinary in scope, the book bridges the gap between fundamental and translational research, with applications in the biomedical and pharmaceutical industry, making it a thought-provoking read for basic and applied scientists engaged in biomedical research. Proteases represent one of the largest and most diverse families of enzymes known, and we now know that they are involved in every aspect of a given organism’s life functions. Under physiological conditions, proteases are regulated by their endogenous inhibitors. However, when the activity of proteases is not correctly regulated, disease processes such as tumour progression, vascular remodelling, atherosclerotic plaque progression, ulcer, rheumatoid arthritis, Alzheimer’s disease and inflammation can result. Many infective microorganisms require proteases for replication or use them as virulence factors, which has facilitated the development of protease-targeted therapies for a variety of parasitic diseases.




Matrix Metalloproteinases In Health And Disease: Sculpting The Human Body


Book Description

The biochemistry and cell biology of Matrix Metalloproteinases (MMPs) are not necessarily straightforward, but basic information on the history of these enzymes, their various functions that extend far beyond the cleaving of the extracellular matrix, and the complex mechanisms that control their expression are valuable to both scientists and clinicians. This volume summarizes the salient features and functions of MMPs and applies this information in a practical manner in order to understand how they contribute to normal physiology and pathology of selected diseases. Chapters by noted clinicians Jean-Michel Dayer, MD in rheumatology, Jian Cao, MD in oncology, and Peter Libby, MD in cardiology, represent important practical and clinically-oriented contributions.




How Tobacco Smoke Causes Disease


Book Description

This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.