Matrix Theory: A Second Course


Book Description

Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.




Linear Algebra and Matrices


Book Description

Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first course and are interested in learning more advanced results.




A Second Course in Linear Algebra


Book Description

A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.




Matrix Theory


Book Description

This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.




Matrix Theory


Book Description

In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.




Linear Algebra and Matrix Theory


Book Description

Intended for a serious first course or a second course, this textbook will carry students beyond eigenvalues and eigenvectors to the classification of bilinear forms, to normal matrices, to spectral decompositions, and to the Jordan form. The authors approach their subject in a comprehensive and accessible manner, presenting notation and terminology clearly and concisely, and providing smooth transitions between topics. The examples and exercises are well designed and will aid diligent students in understanding both computational and theoretical aspects. In all, the straightest, smoothest path to the heart of linear algebra. * Special Features: * Provides complete coverage of central material.* Presents clear and direct explanations.* Includes classroom tested material.* Bridges the gap from lower division to upper division work.* Allows instructors alternatives for introductory or second-level courses.




Introduction to Modern Algebra and Matrix Theory


Book Description

"This unique text provides students with a basic course in both calculus and analytic geometry. It promotes an intuitive approach to calculus and emphasizes algebraic concepts. Minimal prerequisites. Numerous exercises. 1951 edition"--




Linear Algebra and Matrix Theory


Book Description

Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.




A First Course in Random Matrix Theory


Book Description

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.




Matrix Analysis for Scientists and Engineers


Book Description

"Prerequisites for using this text are knowledge of calculus and some previous exposure to matrices and linear algebra, including, for example, a basic knowledge of determinants, singularity of matrices, eigenvalues and eigenvectors, and positive definite matrices. There are exercises at the end of each chapter."--BOOK JACKET.